

Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme

Grant Agreement no. 317601

Deliverable 4.1

Specifications of the lab-owner services and

cloud services - Initial

Editors Elio San Cristobal (UNED)

Christophe Salzmann (EPFL)

Date 29 October 2013

Dissemination Level Public

Status Final

© 2013, Go-Lab consortium

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 2 of 52

The Go-Lab Consortium

Beneficiary

Number

Beneficiary name Beneficiary

short name

Country

1 University Twente UT The Netherlands

2 Ellinogermaniki Agogi Scholi Panagea Savva AE EA Greece

3 École Polytechnique Fédérale de Lausanne EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Educación a Distancia UNED Spain

8 University of Leicester ULEIC United Kingdom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technology Hellas CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten – Gemeinnützige

Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia

15 European Organization for Nuclear Research CERN Switzerland

16 European Space Agency ESA France

17 University of Glamorgan UoG United Kingdom

18 Institute of Accelerating Systems and

Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 3 of 52

Contributors

Name Institution

Christophe Salzmann, Sten Govaerts, Denis Gillet EPFL

Elio San Cristóbal, Irene Lequerica, German

Carro, Miguel Latorre, Agustín Caminero, Antonio

Robles, Gabriel Díaz, Manuel Castro

UNED

Pablo Orduña UDEUSTO

Danilo Garbi Zutin CUAS

Anjo Anjewierden UT

Mavromanolakis Georgios EA

Legal Notices

The information in this document is subject to change without notice.

The Members of the Go-Lab Consortium make no warranty of any kind with regard to this

document, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose. The Members of the Go-Lab Consortium shall not be held liable for errors

contained herein or direct, indirect, special, incidental or consequential damages in connection

with the furnishing, performance, or use of this material.

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 4 of 52

Executive Summary

This deliverable is the initial version of the lab owner and cloud service specifications. It is

divided into three major Sections. The first Section introduces online labs and related

definitions. Then, the smart device paradigm is defined and presented as a metaphor to specify

the services that a remote lab should provide to be seamlessly integrated in the Go-Lab

infrastructure. Finally, the smart gateway is presented as an extension of the smart device to

specify cloud services that enable the reuse of existing online labs.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 5 of 52

Table of Contents

The Go-Lab Consortium ...2

Executive Summary ..4

Table of Contents ..5

1 Introduction..7

2 Online Labs ..8

2.1 Definition of remote laboratories .. 8

2.2 Reusing remote labs and integrating them in learning environments 9

3 Lab-Owner Services - Plug Technology ... 11

3.1 Introduction ...11

3.2 Smart device paradigm ...11

3.2.1 Description ... 11

3.2.2 Initial specifications for remote labs as smart devices .. 12

3.2.3 Smart device services protocols ... 15

3.3 Scenarios ...16

3.3.1 RGB LED: Smart device for remote labs on embedded hardware 16

3.3.2 RED: Smart device for remote labs on desktop computer ... 21

3.4 Remarks ...24

4 Cloud services ... 25

4.1 Introduction ...25

4.2 Smart Gateway ..25

4.2.1 Initial specifications .. 26

4.2.2 Design .. 27

4.3 Scenarios ...27

4.3.1 Introduction .. 27

4.3.2 Aquarium laboratory ... 28

4.3.3 Radioactivity laboratory .. 30

4.4 G4Labs ...32

4.4.1 Architecture .. 33

4.4.2 RLMS Plug-in Architecture and Design .. 34

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 6 of 52

4.5 Remarks ...35

5 Conclusion ... 36

6 Appendix A: Remote laboratory Management Systems (RLMS) .. 37

6.1 Labshare ..37

6.2 iLab Project ...38

6.3 WebLab-Deusto ...40

6.4 LiLa Project ...41

7 Appendix B: Arduino ... 43

8 Appendix C: G4Labs ... 45

8.1 Introduction ...45

8.2 Initial prototype ...45

8.3 Integration of G4Labs in the Go-Lab Portal ...48

8.4 Comparison with the initial prototype ...49

References ... 50

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 7 of 52

1 Introduction

Existing online labs usually rely on ad-hoc solutions developed for specific scenarios. They are

providing dedicated functionalities supported by diverse IT architectures [1]. As a consequence,

their reusability is limited. In addition, the vast majority of the existing online labs are not

integrated in learning environments.

In order to face these challenges, the Go-Lab project integrates a set of technical tasks whose

goal is to provide a set of specifications and guidelines enabling lab owners to seamlessly

integrate their remote labs (task 4.1) and a set of specifications to ease the sharing of existing

labs (task 4.2) into the Go-Lab infrastructure (see D5.2).

This deliverable is an initial version of the lab owner and cloud service specifications. It is

divided into three major Sections. The first Section introduces the online lab concepts and

related definitions. Then, the smart device paradigm is defined and presented as a metaphor to

specify the services that a remote lab should provide to be seamlessly integrated in the Go-Lab

infrastructure. Finally, the smart gateway is presented as an extension of the smart device to

specify cloud services that enable the reuse of existing online labs.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 8 of 52

2 Online Labs

Within the Go-Lab project, online laboratories (referred hereafter as online labs) have been

divided into three general categories (see deliverable 2.1):

● Virtual labs are simulations of real labs. Their strength is that they can be used in all

educational fields, from chemistry to electronics [2-3]. They however rely on complex

dynamic models and animations.

● Remote labs are real labs remotely accessible [4]. Remote labs are exploited in a wide

range of scientific fields in which phenomena are fast enough for live observation, such

as computer science, physics, electronics, automation and control [5-10].

● Data sets are measurements gathered using real scientific instruments such as

telescopes. Recorded data sets can be exploited directly when access to such

instruments is limited.

Task 4.1 and task 4.2 are focusing on remote labs, which is the category for which there are

significant challenges in terms of plugging and sharing. This Chapter presents a definition of

remote labs, the problems that throughout their evolution have arisen, the steps taken to

overcome them and the new concepts introduced within the Go-Lab project framework.

2.1 Definition of remote laboratories

Remote laboratories are physical laboratories that can be operated at distance and that offer to

students the ability to conduct real experiments and collect real data (see deliverable 2.1).

Figure 1. General architecture of a remote lab.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 9 of 52

Currently, the typical architecture of a remote lab (Figure 1) is composed of:

● A Physical experiment and its instrumentation, which is the physical object the

students are interacting with and the instrumentation enabling such interaction.

● A client application, usually a user interface application running on a Web browser, that

allows users to interact with the experiment by setting or changing configuration and

operation parameters and observing their effects through measurements delivered by

the instrumentation.

● A Web server, which is in charge of delivering Web content to the client, interacting with

a Database server and sending parameters to the Controller.

● The Controller is connected to the experiment. It receives parameters from the Web

server, translates them, and resends them to the experiment. It also interacts with the

Database Server in order to store measurements.

● The Database server stores information such as user credentials, experiment

configurations, or measurements.

● Audio and Video Server sends video and audio signals. For example, the live video of

the experiment or the ambient audio.

The Controller, the Web server, the Database server and the Audio and Video Servers can be

running on a single computer or on several ones as depicted in Fig.1.

Currently, a large number of remote labs can be found on the Web following the architecture

described in this Section or a slight modification of it, such as the Faulkes telescope or the

ELVIS / OP - AMP Labs (for more information, see deliverable 2.1).

2.2 Reusing remote labs and integrating them in learning

environments

The generic architecture for remote labs described in Figure 1 can be implemented using

different designs, technologies and software solutions. Therefore, most remote labs rely on ad

hoc solutions that are difficult to share or reuse. To tackle this problem, several initiatives have

been launched to provide schools, universities and organizations with common management

architecture to implement their labs and then share them broadly (for more information see

Appendix A). This architecture is known as a Remote Laboratory Management System (RLMS).

The main RLMS initiatives are:

● LabShare. Led by the University of Technology, Sydney, is a joint initiative of the

Australian Technology Network: Curtin University of Technology, Queensland University

of Technology, RMIT University, University of South Australia, and the University of

Technology, Sydney (http://www.labshare.edu.au/). This project aims at creating a

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 10 of 52

national network of shared remotely accessible laboratories. To do this, they have

developed a software architecture called SAHARA [11-13].

● The iLab Shared Architecture (ISA). Implemented by the MIT to facilitate the rapid

development of new Web labs and to provide

a mechanism for students from one university to use the experiments and the

instruments of another university (https://wikis.mit.edu/confluence/display/ILAB2/Home)

[14-16].

● The WebLab-Deusto project. It is an open source project providing a Web-based,

experiment-agnostic, scalable software infrastructure, which permits the University of

Deusto to offer several labs to its students through the Internet

(https://www.weblab.deusto.es/web/weblab-deusto.html) [17-19].

● LiLa (Library of Labs). An European eContentPlus project that promotes a portal of

Online Labs resources and fosters exchanges of experiments among institutions

(http://www.lila-project.org/) [20-22].

Despite of these initiatives, there is a lack of management integration among them and

therefore sharing labs is still difficult. This is recognized as the main problem for a wide

dissemination of remote labs.

In the Go-Lab framework (task 4.1 and 4.2) two new concepts are defined and applied for

developing, standardizing and reusing new or already existing remote labs. The first one is the

smart device paradigm which focuses on specifications for developing new remote labs (see

Section 3). It revisits the traditional remote lab‟s client-server approach and re-engineers the

server-side components to add more agility and adaptability. This paradigm enables the

definition of services that permits a complete decoupling between the server and the client

components. The second one is the concept of smart gateway (see Section 4), which enhances

existing solutions such as iLab or LabShare, to make them behave as smart devices.

Another important issue with remote labs and RLMS, is the lack of learning environment

integration where students can carry out experiments and other e-learning activities. This is an

added value in the Go-Lab project to enable remote labs implemented as smart devices or

interfaced through the smart gateway to be easily integrated in inquiry learning phases and to

be supported by learning analytics and scaffolds (deliverable 1.1 and 5.2).

The following Sections, 3 and 4, describe the development of new remote labs to be integrated

within the Go-Lab infrastructure (as smart devices), and the integration of existing remote labs

into the Go-Lab infrastructure (through a smart gateway). Section 5 describes briefly how these

two technical solutions can be integrated in the Go-lab Portal.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 11 of 52

3 Lab-Owner Services - Plug Technology

There are many remote labs available on the Internet. Unfortunately, the necessary effort to

make them accessible by other users or organizations is a strong inhibitor for reusing them. This

Section presents specifications to develop and enable an easy plug of new remote labs. These

initial specifications will be refined in upcoming deliverables following evaluation in pilot phases.

The core idea is to rely on the smart device paradigm to provide a consistent frontend to new

remote labs.

3.1 Introduction

The Internet has experimented a tremendous growth in the last decade, evolving from a network

of a few hundred hosts to a platform linking billions of “things” such as sensors, computerized

devices, RFID tags, computers and their associated applications [23]. This growth drives

previous Internet developments into a new pervasive paradigm in computing and

communication. This new paradigm enhances the traditional Internet into a smart Internet of

Things (IoT) created around intercommunications of diverse objects in the physical world [24-

25]. Some of these physical objects are hardware devices with the ability to manage themselves

intelligently, they are referred as smart devices.

This Section introduces the smart device paradigm to elicit the initial specifications for the

creation of new remote labs. The smart device paradigm is used as a metaphor to define a

software component that can easily be integrated in the Go-Lab infrastructure. The deliverable

4.5 in month 30 will presents the final specifications and complete examples.

3.2 Smart device paradigm

Smart devices find their roots in smart sensors. A smart sensor is a sensor that is capable of

transmitting its state or data representing measurements. These sensors can be combined to

compose a sensor network. While smart sensors have limited “intelligence”, i.e., they only

broadcast measured values; smart devices have some onboard “intelligence”. The

interconnection of smart devices sketches the Internet of Things (IoT). Thomson [35] gives the

following requirement for a smart device:

I. A smart device has sensors and actuators,

II. A smart device has identity and kind,

III. A smart device has memory and status tracking,

IV. A smart device has communication capabilities,

V. A smart device is capable of reasoning and learning.

3.2.1 Description

The smart device paradigm defines an ideal device that is capable of understanding any type of

existing or future requests and taking the appropriate actions autonomously according to

receive requests, this using any type of existing or future protocols and standards. While this is

unrealistic, the internal architecture of the smart device should be agile [30] enough to easily be

adapted to new requests, standards and protocols. The smart device paradigm revisits the

traditional client-server approach used to implement ad-hoc remote labs solutions. It enables

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 12 of 52

the definition of services which fully decouple the server from the client. In addition, it suggests

the re-engineering of the server-side components to add agility and adaptability. A clear client

and server decoupling through services enables an effortless integration into learning

environments and social media platforms.

The Go-Lab smart device specifications aim at defining external services to access the real

world through actuators and sensors, and to manage the device using internal services (Fig. 2.).

The smart device services differ from traditional solutions that often provide a monolithic

interface without the possibility to access a specific service [31]. There is no assumption

regarding the communication channels for smart devices. The Internet is the obvious choice, but

other ad-hoc channels may be used instead to fulfil specific criteria.

Figure 2. The smart device can be accessed through services. The client application

relies on Web apps that render data transmitted by the various services.

The smart device paradigm does not include a User Interface (UI) application, but for

convenience it often proposes a minimal set of UI components that can be rendered at the client

side. This client-server decoupling implies that the client application (UI) can be designed by

different providers. Web browsers are the preferred environments to render the UI at the client

side, and several Web apps can be aggregated to provide a complete UI. There is often a direct

relationship between a smart device service and the app that renders the information in the

client UI, for example an oscilloscope app that displays temperature evolution measured by a

smart device sensor.

3.2.2 Initial specifications for remote labs as smart devices

The smart device paradigm defines an ideal autonomous device capable of adaptation that can

be accessed through well-defined services. This paradigm is used to define the specifications

for the Go-Lab remote labs. To define a smart device for a remote lab, additional information

and service definition should be added to the Thomson‟s initial definition. A generic smart

device could already be seen as an autonomous remote lab. On the other hand, it is not

targeted for any specific purpose and therefore the expected outcomes may not be satisfactory.

The principal aim of remote labs is to represent, at the client side, its partial or full state and to

enable real-time interaction. It could be implemented in the form of a simple oscilloscope

window depicting the temporal evolution of a given sensor or a full 3D representation of the

system combined with multi-camera streams. Interacting with the physical lab by directly

controlling actuators or indirectly through a supervision stage (local controller or other logic)

should also be possible. When considering online labs, the client side that renders the server

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 13 of 52

information is also to be taken into account. Client applications that connect to online labs are

typically, but not necessarily, a Web browser. This specific choice of open Web technologies

enables a broader compatibility and favours adaptation as well as adoption. Proprietary

technologies (java, flash, etc.) should specifically be avoided since they remove the solution

ubiquity. The smart device paradigm enables the rethinking of such interface into a Web 2.0

interface.

The smart device for a remote lab is seen from the client side through services. A fine definition

of these services permits the trustworthy decoupling between the client and the server. Some of

these services are dedicated to serve the client application while others are only meant for the

smart device itself. The smart device additional intelligence and agility mainly comes from these

internal services. The service definition enables any user to design his/her own interface to the

smart devices for remote labs. Smart devices for remote labs should provide the following

services (Table 1).

Table 1. Smart device services.

Services Required Internal/External

Metadata Yes external

Sensor, instrument and actuator access Yes external

Self and known state Yes internal

Alarms and logs Yes internal

Local control No external

Data/video streaming No external

Authentication No external

Serving client apps No external

Graphical model No external

Mathematical model No external

Model parameters No external

Simulation engine No internal

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 14 of 52

Metadata: this service returns a structured list of services offered by the smart device. The

service description (capabilities, format, etc.) returned by this service is sufficient to exploit the

other services offered by the smart device.

Sensor, instrument and actuator access: this service interfaces the available sensors,

actuators or instruments part of the lab. The smart device‟s sensors and actuators allow to

measure and act on the physical equipment or on complex instrument, like a telescope.

Self and known state: the service ensures that the smart device is able to come back to a fully

defined and safe state after a user completes his/her experimentation or after a power failure or

a regular start up/power on.

Alarms and logs: detected errors and anomalies are handled by this service. Wrong usage or

network attacks also triggers alarm and appropriate actions. Much information will be logged on

the smart device and provided as needed, such as user activity, network activity or internal

activity.

Local control: The physical lab connected to the smart device may require a local controller to

operate safely or according to certain requirements. The controller algorithm, the parameters

and the internal state can be accessed via the parameters service. The physical security of the

physical system must be ensured at all time.

Data / video streaming: Other sources of data and information may not be related to actuators

or sensors. Typically a video stream, a live parameters stream or an activity stream can be

handled by this service.

Authentication: This service ensures that the current client is correctly identified and has the

right to talk to the smart device at this given time. If not, the access will not be granted and an

alarm should be issued. The reservation and booking mechanism may be partially handled by

external entities, in this case the smart device only verifying correct authentication.

Serving client apps: The smart device may provide a basic user interface in the form of apps.

Graphical model: this model describes the physical equipment such that it can be

rendered/drawn at the client side in real time. The model can be 2D or 3D.

Mathematical model: this model describes the dynamics of the physical equipment as

mathematical equations. These equations can be integrated at the client side to perform a

simulation.

Model parameters: represents the parameters of the mathematical model. They may have

been identified on the physical system.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 15 of 52

Simulation: simulation engine that computes the state of the smart device and mimic the

sensor and actuator. It can be used when there is no concurrent access. Also simulation can

run slower or faster that real-time.

3.2.3 Smart device services protocols

The previous Section defines the smart device services for remote labs. At this point, the

protocol used by the service needs to be specified. While the smart device paradigm suggest

the support of any protocols, the Go-Lab infrastructure, the considered remote labs and the

targeted audience impose Web 2.0 protocols combined with efficient real-time transmission.

Nowadays Websocket [33] is the most efficient transmission mean at the browser level.

Websocket are similar to TCP/IP sockets but at the browser level.

To simplify the communication handling at both the smart device and the client application (Web

apps) the JSON encoding [34] has been chosen by default for the Go-Lab smart device. The

JSON protocol has the advantage of being both readable by a human and processable

(parsed/generated) by a machine. For example to specify a sensor service that broadcast

temperature, the metadata would contain:

 {

 "name":"Temperature1",

 "unit": "Celsius",

 "range": "min: -20 max:60",

 “mode”: push,

 “rate”: 1,

 “wsURL”:“ws://server:port/T1”

 }

By parsing the above information, the Web app has the needed information to connect to the

temperature sensor via the given Websocket. The next step for the Web app is to open a

connection to the provided wsURL and wait for the temperature measurements to arrive at a

rate of 1 per second. The receive information will look like the following:

 {

 "name": "Temperature1",

 “value” : 23,

 }

A JSON schema could be provided by the lab owner to validate the exchanged information [34].

Enforcing such schema is under evaluation.

With the above information, the data exchange between the smart device and the web apps are

defined. The metadata service provides a list of available services and the associated

information. The other services provide/consume the data according to the metadata service.

Only the main URL is needed to access the smart device, it will be provided through the Go-Lab

portal.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 16 of 52

3.3 Scenarios

The Section presents two examples of remote labs that are built following the smart device

specifications. This ensures an efficient and easy integration with the Go-Lab infrastructure. On

the software side, these two examples are built from scratch. Section 4 sketches how to extend

an existing remote lab following the smart device specifications.

In the first scenario the remote lab runs on a dedicated embedded hardware (Arduino) in the

second example the remote laboratory runs on a desktop computer.

3.3.1 RGB LED: Smart device for remote labs on embedded hardware

Nowadays, there are many alternative hardware and software solutions which are able to

manage themselves and manage other devices connected to them, such as Raspberry pi and

Arduino. This subsection describes briefly one of the well-known devices exploited in Go-Lab to

implement the smart device specifications by combining an integrated hardware and software

solution.

The RGB LED lab demonstrates the required steps to integrate a simple physical device (the

RGB LED) into the Go-Lab infrastructure. It first describes the pedagogical context, then explain

how to interface the physical LED using embedded hardware. The next step is the development

of the software according to the smart device paradigm. Finally the integration to the Go-Lab

infrastructure is presented.

Pedagogical Context

The RGB LED allows teachers to discuss and explain the process of perception of the human

eye and brain, the different perception of colours that each person can have, and could be used

for other purposes, such as:

● The formation of human vision: What is the mechanism that causes light passing

through the optic nerve and it is shown in our brain as sharp image.

● The physics of colour: How we can see some colours and not others, what frequencies

are perceptible by the human eye and which ones are not, how animals perceive

colours, or how the insects see.

● Primary colours: What primary colours there are, how their combination can lead to other

colours, what types of combinations there are.

● Representation of colours: How colours are represented in the real world, in digital

format, on TV, on canvas, or on paper.

● Effect of colours on the mind of people: Why do certain colours convey certain feelings

to the observer?, what mechanism articulates these reactions in the brain?, why some

people like some colours and others like others?

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 17 of 52

This lab can be integrated into inquiry learning spaces, as described in the deliverable D.1.1,

and complemented with other guidance tools to support scenarios mentioned above.

Arduino Development

Arduino is a flexible microcontroller and development environment that can not only be used to

control devices, but also to read data from all kind of sensors. Its simplicity and extensibility, in

addition to its great success and adoption by users has led to the development of a variety of

hardware extensions and software libraries that enable wired and wireless communication

between Arduino and the Internet [26][27].

The microcontroller on the board is programmed using the Arduino programming language,

based on Wiring [28] and implemented in C/C++. It also provides an Arduino development

environment which consists of a text editor for writing code, a message area, a text console, a

toolbar with buttons for common functions, and a series of menus. The development

environment connects to the Arduino hardware in order to upload applications and interact with

them.

This microcontroller can be connected to the Internet through hardware extension which are

called Shields. The most well-known Shields are:

● The Arduino Ethernet Shield connects the Arduino to the Internet in a few minutes.

● The Arduino WiFi Shield provides a wireless connection between the Arduino and the

Internet.

● The Arduino GSM Shield connects the Arduino to the internet using the GPRS wireless

network.

Therefore, Arduino is a microcontroller which can interact with the environment by receiving

input from a variety of sensors and can perform actions as controlling lights, motors, and other

actuators (for more information, see Appendix B).

Development

This subsection describes the development carried out and the draft specifications of services

proposed in 3.2.2.

Once the pedagogical purposes of this lab have been defined, it is necessary to select the

hardware components needed to fulfil the requirements. RGB LED lab is composed by an

Arduino One, the Ethernet shield, a protoboard which implements the circuit that modifies the

red, blue and green channels of the LED, (see Figure 3), and an IP camera. The Ethernet shield

can be replaced by a RPi or PC connected to Arduino by a USB connector (For more

information, see Appendix B).

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 18 of 52

The Arduino has been programmed to modify the Red, Green and Blue channels, this are LED

actuators, that are provided as services by the Ethernet shield to Internet. The camera provides

the video for teachers and students.

Figure 3. Hardware implementation of RGB LED lab.

Once the basic schema has been implemented, a set of services must be designed and

implemented. These services provide the desired additional intelligence, see Section 3.2.2.

● Metadata (required, external). This service provides a description of the smart device,

its components and a brief description about their features. An example of the JSON

pseudo code for the RGB LED is:

{

metadata version: September 24 2013 - 1432

authors: Chris, Elio, Pablo

institution: EPFL, UNED, UD

format:

Available smart services: (1)

sensors: (0)

actuators: (1)

1: name: RGB LED parameters (3)

Param

1: name: RED

unit: percent

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 19 of 52

range: min: 0 max:100

2: name: GREEN

unit: percent

range: min: 0 max:100

3: name: BLUE

unit: percent

range: min: 0 max:100

experiment: This experiment illustrates the additive colour model. In the client interface the users will be able to adjust

three sliders that represent the three primary colours. Red, Green and Blue (RGB). These three sliders will control an

RGB LED located in a protoboard.

Access: free access, no booking possible, first come first served

Streaming device (1)

1: name: camera1

 format: RGB, w:640, h:480

 compression: JPEG, adaptive

 refresh rate: 10 Hz

 access right: no

...

Physical model: none

Mathematical model: none

Apps (2)

 1: name: RGB Sliders

 format: W3C

 URI: /RGBSliders.xml

 2: name: Webcam Streaming

 format: W3C

 URI: /WebCam.xml

}

● Sensor, instrument and actuator access (required, external). This service allows

receiving data from sensors and sending data to the actuators. In our RGB lab that

would be changing the colour of the LED through the actuators RED, GREEN and BLUE

 -> {RED:100, GREEN:100, BLUE:0 } // this should give a yellow colour

 <- {100,100, 0 } // the server acknowledge the commands

● Self and known state (required, internal). The device smart device should be able to

come back to a fully defined and safe state. The RGB LED should be able to turn back a

safe state when the experiment ends.

-> {experiment ended } // experiment done

 <- ok // Initial state

● Alarms and logs (required, internal). This service should store information as user

access, user activities, etc. and should send alarms if there are attempts of unauthorized

accesses, etc. I.e.: the RGB LED lab should store the use of the actuators by students.

● Local control (optional, external). RGB LED lab controls a LED, therefore it does not

need to control that the LED operate safely or according to certain requirements. E.g., if

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 20 of 52

the smart device controls a pendulum then this service should control the oscillation

period and other issues to avoid problems with the physical pendulum.

● Data/video streaming (optional, external). This service is focused on video stream

and others like stream activities. An example of this for our RGB LED lab could be:

-> {video: source: camera1, resolution: 640 x 480, compression: JPEG}

<- {header:..., payload: JFIF 6 06 07 06 05 08 ...}

● Authentication (optional, external). Basic authentication could be required for some

labs. The smart device will check that the “client” has the right to interact with it. In our

example, as is described by the metadata service, the access to RGB LED lab is free.

● Serving client apps (optional, external). The smart device may provide a basic user

interface in the form of apps. The Ethernet Arduino shield provides a publishing facility

that allows publishing web pages in the Web to modify Red, Blue and Red channels.

The client application service uses basic Web apps, see example:

-> JSON {app name: Color Sliders}

<- JSON {W3C Opensocial: URI://.....xml }

 XML or any other format

● Graphical model (optional, external). This model represents the physical equipment

such that it can be rendered/drawn at the client side. The model can be 2D or 3D. It is

not currently developed for our RGB LED lab.

● Mathematical model (optional, external). This model describes the dynamic of the

physical equipment as mathematical equations. These equations can be integrated at

the client side to perform a simulation. The RGB LED lab uses a triad of colours (Red

value, Green value and Blue value) and upon this triad a mathematical model could be

used in order to represent another colour model such as CMY:

// RGB -> CMY

//RGB values = From 0 to 255

// CMY values = from 0 to 1

C = 1 - (R / 255)

M = 1 - (G / 255)

Y = 1 - (B / 255)

● Model parameters (optional, external). Represents the parameters of the

mathematical model. They may have been identified on the physical system. The RGB

LED lab has the parameters Red, Green and Blue.

● Simulation (optional, external). Simulation engine that represents the smart device

and mimic the sensor and actuator interaction. This possibility is quite useful when there

is no real access to the experiment. Also simulation can be used to run slower or faster

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 21 of 52

than the real-time experiments. This simulation uses the mathematical model and

parameters from smart devices.

Go-Lab Integration

The RGB LED lab example provides two basic Web apps through “Serving client apps” service.

The first one is a set of sliders to modify the Red, Green and Blue channels, and a second one

streams the video from the camera.

These Web applications will be stored in the Go-Lab Portal and will be integrated in inquiry

learning spaces, Figure 4, as a set ready to be used by students and teachers.

Figure 4. The RGB LED lab integrated in an inquiry learning space. The various Web apps

connect to the specified services (video stream, actuators).

3.3.2 RED: Smart device for remote labs on desktop computer

The RED lab scenario presents the integration of a more complex experiment. In addition, this

example shows briefly how an existing server has been redesign to follow the smart device

specifications. It first describes the pedagogical context, and then explains the choice of smart

device services that will be implemented. The in-depth server implementation will be provided

as a software package ready to use by other lab owners. Finally, the integration to the Go-Lab

infrastructure is presented. This scenario, especially the pedagogical context, takes advantage

of the initial server described in [31]. The server hardware is kept the same while the software

has been rewritten to follow the smart device specifications. The original server software was

not designed to handle an evolving client application; it assumed an ad-hoc monolithic client

interface written in Java. In addition, the technological choices concerning the communications

did not permit a pure Web based interface.

Pedagogical context

Laboratory experiments remotely controlled are often mechatronic devices with moving parts as

they exhibit visually observable dynamical behaviors. For example the laboratory-scale

electrical drive (the experiment in Figure 5) is used in many textbooks and courses to illustrate

motion control approaches. This setup consists of a DC motor equipped with a digital encoder.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 22 of 52

The angular position is measured with a digital encoder connected to the motor axle. A rotating

disk permits the visualization of the angular motion that is captured by a video camera. The

whole hardware has been designed in such a way that it is secure, fully controllable and can be

diagnosed from the connected computer. The electrical drive is connected to the computer

through an AD/DA card.

Figure 5. The RED smart device.

The software manages the electrical drive on one side and provides on the other side services

to client applications and Go-Lab infrastructure. The smart device software implements a real-

time controller for the electrical drive, a video acquisition component for the camera, a custom

Web server to handle client requests and the needed components to manage internally the

services.

RED services

The RED smart device implements the four required services. In addition, it implements the

following services: local controller, video stream, parameters stream and basic client app (Web

apps).

The built-in custom Web server is serving the Web apps source code (javascript) to remote

users. In parallel, it handles websocket connections issued by the Web apps. These websocket

connections refer to the services offered by the smart device. The websocket connections

related to sensors and actuators are linked internally to the real-time data acquisition (AD/DA in

Figure 7). The proposed services are:

● Metedata: A JSON encoded list if available services and related information.

● Sensor, instrument and actuator access (required, external). There are 2 sensors,

one for the disc angular position and one for the disc speed. In this example we focus on

the position. Note that there is no direct access to the actuator (the motor voltage), the

actuator is controlled via local controller and the parameter stream services.

● Self and known state: at power up, or when the investigation phase is completed, the

server goes back in a predefined state, i.e., the motor voltage is set to 0.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 23 of 52

● Alarm and logs: internally the server logs all access, it also checks that received packet

is valid and raises an alarm if needed.

● Data/video streaming: a camera films the RED smart device disc (see centre of Figure

7). The frames are streamed as a succession of jpeg images.

● Local controller: the desired position/speed of the RED disc is enforced by a PID

controller. The controller computes the voltage to apply to the motor according to both

the current and the desired values of the sensor. The controller parameters are given by

the Parameter stream.

● Parameters: 3 parameters are defined for this example: reference position, PID

proportional gain and PID integral term. The controller will behave according to these

parameters. The user will change these parameters in the user interface and see its the

effect.

● Serving client apps: a basic user interface is provided as 3 Web apps, see center of

Figure 7. The sensor, actuator, measurement are rendered is an oscilloscope window.

The video is directly rendered by the provided Web apps. The 3 parameters can be

changed using 3 sliders. Alternatively these Web apps can be provided by other entities.

All the needed information to connect and render the various smart device services is provided

by the metadata service. It is the matter of entering a URL to use the Web app proposed by

other as interface.

Figure 6. The RED smart device internal connection scheme.

Server implementation

The server software implemented as a smart device (https://graasp.epfl.ch/#item=asset_13490).

It is written in LabVIEW, a graphical language designed especially but not only for data

acquisition and control. A LabVIEW software package implementing the smart device

specifications is in preparation and will be provided to lab owners who do not want to write their

https://graasp.epfl.ch/#item=asset_13490

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 24 of 52

remote lab server from scratch. By using this package they will be ensured of a seamless

integration into Go-Lab infrastructure.

Go-Lab integration

The RED smart device user interface is visible in Graasp using the following URL:

https://graasp.epfl.ch/#item=space_2185.

The RED smart device provides 3 basic Web apps to display the video stream, the

measurement stream and to enter the internal controller parameters. There is another Web app

not provided by the smart device to save current measurements.

Figure 7. The smart device interface for the electrical drive rendered within an inquiry

learning space. The various Web apps connect to the specified services (video stream,

sensors, actuators, parameters).

3.4 Remarks

The RGB LED lab prototype provides an easy example to turn a physical lab into a remote lab

accessible as a smart device. Both the hardware and the software necessary to plug the

physical lab are provided. This is especially helpful if a physical lab is available, but is not

connected yet online.

The RED prototype shows how a more complex smart device can be implemented. This

prototype has been used to help defining the smart device specifications and services. Its

internal structure is left open to the implementer (lab owner) but it should be easy to add

sensors or implement a new release of the communication protocol. A LabVIEW package that

implements an initial smart device will be provided freely. In this initial demonstration the

authentication/reservation services are not implemented. They will be in a forthcoming release.

https://graasp.epfl.ch/#item=space_2185

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 25 of 52

4 Cloud services

The next Section presents the smart gateway concept as an extension of the smart device to

specify cloud services enabling the reuse of existing online labs.

4.1 Introduction

Cloud Services are services necessary to ensure compatibility and allow different laboratory

providers to plug their systems in the Go-Lab infrastructure.

If a legacy remote lab cannot be updated to be in compliance with the smart device

specifications, a smart gateway can be added as a layer between the legacy lab and the Go-

Lab infrastructure to ensure this compatibility. One of the tasks of the smart gateway is the

“translation” of legacy lab requests/protocols to smart device services.

Due to the differences between Remote Lab Management Systems (RLMS) and the fact that

each system has different design goals, it was decided that the smart gateway should be as

flexible and generic as possible to support a variety of these RLMS. Following these

requirements, a plug-in architecture was chosen. Thus, the smart gateway relies on plug-ins to

implement the translation required by native legacy RLMS. Plug-ins for well-known RLMS such

as WebLab-Deusto or iLab Shared Architecture will be provided. Plug-ins for specific RLMS will

be developed by lab owners according to the proposed specifications and guidelines.

The Cloud services rely on Lab Metadata. The initial specifications of these Metadata are used

to describe the different lab resources in a machine processable way. The main purposes of the

metadata are:

● To allow systems (RLMS, Lab repositories, etc) to share information about labs

● To provide mechanisms for discovery of labs

● To structure data in laboratories and RLMS databases

● To provide requirements for plugging/sharing labs with third party systems (e.g., Go-Lab

Portal) and for the exploitation of labs

● To provide easy exchange of lab data and allow for advanced search mechanisms

● To support dissemination of labs

The metadata schema used to describe the resources in the Go-Lab is based on a combination

and extension (based on Go-Lab requirements) of the ROLE Ontology and the GOLC

specification [32]. The metadata schema is described in detail in deliverable D5.2.

4.2 Smart Gateway

The Smart Gateway is the component in the cloud services that enable lab owners to plug their

systems into the Go-Lab infrastructure. It targets lab owners in the sense that it is transparent

for teachers and students. The smart gateway implements the services specifications defined in

Section 3 to expose existing legacy labs as smart devices.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 26 of 52

Figure 8 shows the smart gateway connecting different labs to the Go-Lab infrastructure.

Figure 8. Legacy Labs and the Smart Gateway.

The Legacy Lab I is connected to a server that transmits data to a remote client app via the

TCP/IP protocol. In this case the smart gateway mainly repackages legacy communication (TCP

data) into services and provides the “translation” mechanism that converts Go-Lab

authentication and reservation requests into its native legacy counterpart. This “translation”

mechanism is implemented by the G4Lab component (G4Lab is described in detail in Section

4.4) of the Smart Gateway. If a legacy lab is available via a RLMS (Remote Lab Management

System) a plug-in that implements the needed communication layer for a given native legacy

RLMS is necessary in order to validate the user‟s credentials and possible reservations.

Examples of such RLMS are iLab or WebLab Deusto. A more detailed description about the

different RLMS mentioned here is available in appendix A.

4.2.1 Initial specifications

The Smart Gateway must provide the following functionalities:

● Act as a bridge to request reservations to the laboratory (or RLMS).

● Wrap the authentication and authorisation processes of the laboratory (or RLMS).

● Interact with the laboratory (or RLMS) to enable the proper separation of the service into

different apps as requested by the user.

● Translate the data provided by the particular laboratories to the specifications defined

earlier in this deliverable (WS + JSON).

Depending on the particular laboratory or RLMS, some of these features might not be provided

and therefore they will have a lower compliance level with the specifications defined above,

while still accessible from the Go-Lab Portal.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 27 of 52

4.2.2 Design

As previously stated, the Smart Gateway covers different requirements. Some of them can be

grouped in wrapping authentication, authorisation and scheduling, while others are focused on

translating protocols of the particular laboratories. For example, two laboratories developed on

the same RLMS (e.g., an aquarium and an eggs incubator developed in WebLab-Deusto) will

have the same authentication, authorisation and scheduling mechanisms, but will have different

variables (e.g., balls, cameras in the aquarium as opposed to an egg tester and cameras in the

egg incubator). For this reason, two complementary solutions are required.

For the first requirements (dealing with authentication, authorisation and scheduling), the Smart

Gateway relies on G4Labs, described in detail in Section 4.4. This solution supports the

OpenSocial specifications so it acts as a bridge for different RLMSs and OpenSocial. Lab

owners and especially RLMS providers are expected to develop small plug-ins for G4Labs and

they will automatically benefit from the integration in the Portal. Essentially, G4Labs makes a

simpler API that deals with these functionalities and provides a framework for reusing code

among the different RLMSs. This way, the connector to the Go-Lab Portal used by all the

laboratories of WebLab-Deusto are the same than the one used by all the laboratories of the

iLab Shared Architecture. Furthermore, once one of these RLMSs is supported, automatically

every other laboratory developed on top of it will work and it can be integrated in the portal.

For the communication translation requirements, ad hoc solutions are required. Every laboratory

is different, with different variables, even inside a particular RLMS. The communications used

by those laboratories are only understood by them and therefore it is required to make different

bridges that, taking a particular laboratory and a running reservation identifier, can map it to the

smart device specifications.

4.3 Scenarios

This Section describes real-world scenarios of integration in the Go-Lab portal using the Smart

Gateway.

4.3.1 Introduction

Based on the initial requirements for the Smart Gateway defined above, it is possible to identify

two broad conceptual scenarios for lab owners to plug their legacy systems in the Go-Lab

infrastructure. The first one is when the smart gateway acts as a protocol translator,

repackaging legacy lab communication and exposing their functionalities according to the smart

device services specifications.

However, repackaging legacy lab communication might not always be feasible, especially if the

lab is owned by third party institutions or uses a specific and/or proprietary protocol. Beyond

that, it would require a redesign of all existing legacy client applications that communicate with

the legacy labs. In these cases, the smart gateway will provide all necessary mechanisms to

authenticate users coming from Go-Lab against the legacy lab systems and to package legacy

clients into Web apps. As the majority of legacy lab systems are grouped around RLMSs and for

other reasons already outlined in Sections 4.1 and 4.2, the Smart Gateway uses a plug-in

architecture to provide support for these different communities.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 28 of 52

The scenarios described in this Section are the aquarium (using WebLab-Deusto) and the

radioactivity laboratories (using iLab Shared Architecture). Both labs are available in Go-Lab via

the Smart Gateway. In both cases, the authentication, authorisation and scheduling processes

are supported, while the translation of the protocols has not been implemented. As previously

stated, that would require new independent components to be implemented (these initial

releases will be available at M21 in D4.3).

4.3.2 Aquarium laboratory

This Section describes the migration of the existing aquarium laboratory of WebLab-Deusto

through the smart gateway

Pedagogical Context

The Aquarium laboratory was developed using the WebLab-Deusto RLMS. For this remote lab,

the user interface shows a set of balls which contain different liquids. The user can drop them

into the aquarium and observe how they float. In order to be integrated in the Go-Lab Portal,

some changes in this lab were required. The user interface was divided into different apps,

there is communication between the different components, and it complies better with the

specifications defined in this deliverable. This Section explains the initial state of this lab and

provides an overview about the migration of this lab to the Go-Lab infrastructure.

URL: https://graasp.epfl.ch/#url=SmartGatewayAquarium2013

Initial state

The aquarium laboratory is developed using the WebLab-Deusto RLMS. The original user

interface is shown in Figure 9. It can be seen that there are two real time cameras on the left

side, and two pictures showing how much under water are the dropped balls.

As any WebLab-Deusto laboratory, the user can use it for a particular slot, so there is a fixed

time for that slot (3 minutes 45 seconds) in the picture. Since this laboratory is collaborative (i.e.,

multiple students can access it and interact with the laboratory at the same time), every 3

seconds the Web browser asks the server if anything changed. If it is the case (e.g., a ball was

moved up), it updates the user interface showing that the yellow ball is up.

Migration

The migration from the legacy lab to a Go-Lab compliant version consists in bridging the

authentication and authorisation from the inquiry learning spaces (ILS) to the WebLab-Deusto

server. So as to do this, G4Labs was used, with a custom plug-in for WebLab-Deusto. This way,

WebLab-Deusto may know which user in the ILS platform used it (as long as the user was

logged in, otherwise it will only know that it was a Guest user) and it may know from which

space the user is coming. Furthermore, it consists in the separation of the user interface in

different independent apps. Each app can run on its own, and will contact the space to

coordinate with other apps if they aim to reserve the same laboratory (the aquarium). If it is the

case, they coordinate to make sure that only one of them requests the reservation.

https://graasp.epfl.ch/#url=SmartGatewayAquarium2013

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 29 of 52

Figure 9. Original user interface of the Aquarium laboratory in WebLab-Deusto.

From an architectural point of view, the WebLab-Deusto architecture supports two types of

laboratories: managed and unmanaged. The aquarium is a managed laboratory. The WebLab-

Deusto architecture for managed laboratories is described in Figure 10, as well as the plug-in

architecture for G4Labs. In the managed architecture, the clients connect to a main core server,

which forwards (and stores) the requests to the assigned “experiment server” (using the

WebLab-Deusto nomenclature). In the Figure, three different laboratories go to three different

“experiment servers” located in two different locations inside the same institution.

Regarding the integration, as shown in this Figure, the client connects to the Go-Lab Portal. The

portal provides the aquarium apps. Then, the client loads them, loading resources from G4Labs.

Each of these apps knows what part of the user interface must be rendered (e.g., the blue ball

or the second camera). The user clicks on the “Reserve” button in any of the apps, G4Labs

contacts through a proper RLMS plug-in that understands WebLab-Deusto for a reservation

identifier. Then, that reservation identifier is returned to the app that made the request. This app

propagates this reservation identifier to the rest of the apps in the ILS. This way, all these apps

contact the G4Labs server asking to display a particular part of the user interface with that

reservation identifier. The G4Labs server translates that to the way WebLab-Deusto separates

its user interface, and from that moment all the communications are between the client and the

WebLab-Deusto server. From this point, the communications are the same as in the WebLab-

Deusto managed architecture, adding no latency.

Complete migration

The complete migration, which will be completed as part of D4.3, will require two major

changes: protocol translation and optimization of the shared communications.

The first change, i.e., the protocol translation, will require a new component to be deployed in

the WebLab-Deusto side that will wrap the communications with the WebLab-Deusto server to

provide a unified protocol and be compliant with the specifications explained in this deliverable.

That will require reimplementing the user interface to use those specifications instead of the

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 30 of 52

WebLab-Deusto protocol with the data of the aquarium. It will also add some latency since the

communications go through other layers.

The second change, i.e., the optimization of the shared communications, will require client side

coordination. In the original aquarium laboratory, every 3 seconds a request to the server is

performed to retrieve the current status (e.g., somebody else has moved a ball). In the current

migration, if there are 4 Web apps showing 4 balls, they will all perform these requests every 3

seconds. This way, there will be 4 times more requests for information, while it would not really

be required. The Web apps at client side could select that one of the Web apps will maintain the

shared information, so it will be the only one performing requests to the server and it will

communicate the results to the rest in the client.

 Figure 10. WebLab-Deusto architecture for managed laboratories (left), and the plug-in

architecture (right).

4.3.3 Radioactivity laboratory

This Section describes the migration of the existing radioactivity lab of iLab through the smart

gateway.

Pedagogical Context

The radioactivity laboratory was developed and deployed at the University of Queensland in

Australia and it has been used by secondary schools in the USA through the Northwestern

University. This lab allows students to explore how radioactive radiation changes as a function

of distance. The intensity of radiation emitted by a Strontium -90 source is measured by a

Geiger counter at different distances set by the students.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 31 of 52

URL: https://graasp.epfl.ch/#item=widget_4282

Initial state

This lab has been developed in compliance with the iLab Shared Architecture (ISA), a Remote

Laboratory Management System from the MIT in use by several institutions worldwide. ISA

defines two types of laboratories, batch and interactive. In Figure 11 the batch case is

illustrated. In these model labs, clients communicate with lab servers via a Web service API

based on SOAP and this process is always mediated by a Service Broker. The Radioactivity

laboratory falls into these type of laboratories.

Figure 11. iLab Shared Architecture: Batch laboratories.

Migration

In the context of Go-Lab, the Carinthia University of Applied Sciences (CUAS) deploys a MIT

iLab Service Broker, and the Radioactivity laboratory is registered on it. Therefore, using the

G4Labs plug-in for ISA, it is possible to have this lab available in the Go-Lab infrastructure.

Figure 12 shows the process flow for the communication with the radioactivity lab after the

integration in Go-Lab.

1. The user connects to the Go-Lab Portal and downloads the apps to access the lab and

includes it into an ILS.

2. The user will access the lab via the downloaded app. When the user clicks on “reserve”

the app connects to the G4Labs requesting the initiation of a lab session.

3. The G4Labs acts as a trusted authority that initiates a lab session in the service broker

on behalf of the user.

4. Assuming the credentials of the G4Labs are successfully verified by the service Broker,

a lab session is created and a URL to launch the client application is returned to the

G4Labs and later on to the user.

5. The app contacts the Service Broker (at CUAS in this case) with the URL provided in the

previous step.

https://graasp.epfl.ch/#item=widget_4282

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 32 of 52

6. That Service Broker will connect to the Radioactivity Lab Server hosted at University of

Queensland, Australia.

Figure 12. Migration of the Radioactivity Lab to Go-Lab with the Smart Gateway.

In this approach no modification in the original Lab Servers is necessary. From their perspective

all experiment execution requests from Go-Lab users will come from the Service Broker at

CUAS. The laboratory will be available in ILS in a transparent way through the connection with

G4Labs.

Complete Migration

A complete migration in this context is requiring the implementation of a protocol translation that

converts client requests (according to smart device specifications) made to the Smart Gateway

to the SOAP based Web Service API supported by an ISA Service Broker. At this moment this

feature is not implemented.

Similar as in the case of the aquarium lab, this process might add some additional latency to the

requests made to the lab. However, as batch experiments run asynchronously this should not

interfere on the user experience. In the case of the batch labs of ISA RLMS the API for client -

Service Broker communication is well specified and unique for any batch lab compliant with ISA.

However client apps would also need to be redesigned to follow the new service specifications.

4.4 G4Labs

G4Labs1 is a software system that fosters interoperability between learning environments (and

other systems), such as the Go-Lab Portal, with different remote laboratory management

systems (RLMS, such as WebLab-Deusto or MIT iLabs). It has been extended to support the

1
 https://github.com/gateway4labs/

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 33 of 52

Go-Lab Portal, as well as to support the apps-based approach where the lab owner may split

the user interface of the laboratory in different parts.

4.4.1 Architecture

The architecture is described in Figure 13. It connects two different types of components: the

left side represents the consumer systems (Go-Lab Portal in this case), and the right side

represents the RLMS connector. Every RLMS connector installed on the right side will be

supported by all the consumer systems (including the Go-Lab Portal).

Figure 13. G4Labs architecture.

The RLMS connectors work with a plug-in system. Each one of this plug-in implements a

common interface, mapping the concepts to a particular RLMS. For example, the plug-in for

WebLab-Deusto will provide a set of method such as “reserve laboratory „Aquarium‟ for Go-Lab

Portal user „122‟, and provide the URL for the „Blue ball‟ app, as well as the reservation

identifier”, or “with this reservation identifier, provide the URL for the „Yellow Ball‟ app in that

existing ongoing reservation”.

The following Section describes the changes to adapt this architecture to the Go-Lab Portal.

The Scenarios Section describes the integration of particular RLMSs.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 34 of 52

4.4.2 RLMS Plug-in Architecture and Design

So as to support new laboratories, each lab owner must create a bridge between G4Labs and

the particular lab. In order to do this, G4Labs provides an API for developing new plug-ins. This

process is not especially complex, since most of the time this only implies writing the required

code for performing a reservation and sharing a secret with the final user. However, this might

become more difficult if there are limitations in the laboratory code, such as not being able to

securely pass a URL for identifying a booking.

The plug-in system, at the time of this writing, requires that a developer write a plug-in in the

programming language used by the rest of G4Labs (Python). However, ongoing work is focused

on providing a REST API so that lab owners can use any other programming language.

The lab owner must provide through the plug-in:

● A method to retrieve the capabilities of the laboratory. If it supports being separated in

apps, for instance. Otherwise it will consider the whole Web application a single big app.

● A method to retrieve what apps the laboratory provides. For instance, the aquarium

laboratory will return a set of components (e.g., camera1, camera2, red ball, etc.).

● A method to request a reservation. The G4Labs main component will provide information

such as the full name of the user (“Guest” if it is not authenticated), user agent (what

web browser is using), the origin IP address, etc. The plug-in must contact the laboratory

server and return a reservation identifier and a URL to be loaded. If the laboratory

supports being separated in different apps, the plug-in must also provide a method to

load each app with the provided reservation identifier, to guarantee that all the apps are

using the same reservation, instead of creating different reservations.

● A method to request a Web form for configuring the laboratory details (different

laboratories require different information, different credentials forms or different

identifiers).

From the side of the RLMS it should be able to respond to the requests sent by its plug-in. So

the RLMS should be able to:

● provide and external URL and other necessary credentials for consumption by the

G4Labs

● Support the dynamic creation of new users (or manage external users properly or be

stateless)

At the time of this writing, there are three prototypal plug-ins implemented: one for WebLab-

Deusto, other for the iLab Shared Architecture, and other for the physics lab of the Facultad de

Ciencias Exactas Ingeniería y Agrimensura of the National University of Rosario (Argentina).

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 35 of 52

4.5 Remarks

As previously mentioned, the Cloud Services include all services necessary to ensure

compatibility of legacy systems with the Go-Lab platform and therefore allow different laboratory

providers to plug their systems in the Go-Lab infrastructure.

The Smart Gateway is the core component of the cloud services and, as mentioned in Section

4.2.1, it acts as a bridge between the Go-Lab infrastructure and the legacy lab systems. In the

ideal scenario, it should provide a protocol translation between legacy lab systems and the

services specified in Section 3 of this document. However, it should also ensure the

compatibility of those systems for which the implementation of such protocol translation is not

feasible.

Furthermore due to the fact that most legacy lab systems are grouped around RLMSs (Remote

Lab Management Systems) it was decided that the Smart Gateway should include support for

those RLMS. The Smart Gateway includes this support via its component G4Labs and this is

achieved by means of a plug-in architecture. However, work towards the implementation of a

REST Web Service API is underway. It will allow lab owners to implement support for their

systems using their preferred development platform.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 36 of 52

5 Conclusion

This deliverable presents the initial specifications for the lab owners to implement remote labs. It

present the smart device paradigm which revisits the traditional client-server approach for

implementing remote laboratories by adding more agility at the server side and by relying on

Web solutions at the client side. This paradigm is used to define the specifications for remote

labs where a clear definition of services proposed by the smart device enables a complete

decoupling between the client and the server. The decoupling combined with the proposed

specifications greatly simplifies the integration of new remote labs within the Go-Lab

infrastructure.

Legacy remote labs that cannot be directly implemented as smart devices can be interfaced

through a Smart Gateway. The Smart Gateway acts as a bridge between the Go-Lab

infrastructure and the legacy remote labs. It provides protocols translation when feasible and

support for Remote Lab Management Systems. The Smart Gateway includes this support via its

G4Labs component and this is achieved by means of a plug-in architecture.

This deliverable introduces the smart device specifications and provides guidelines and

specifications about the services handled by the smart device. Besides, it introduces the Smart

gateway concept which describes the way of interfacing existing labs as smart devices. All

these concepts and initial specifications will be refined during the course of the project and will

be updated in future deliverables (G4.3 at M27 and D4.5 at M30).

Currently, prototypal implementations of the above specifications are under development and

have been described in this document. Links to these open solutions will be provided on the Go-

Lab Project Web site once the first stable versions will be released.

Accessing smart devices through well-defined services gives a total freedom to develop their

client applications.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 37 of 52

6 Appendix A: Remote laboratory Management Systems (RLMS)

This Appendix describes in more detail the RLMS from Section 2.2 and the solution adopted in

each case.

6.1 Labshare

LabShare is led by the University of Technology, Sydney, and is a joint initiative of the

Australian Technology Network: Curtin University of Technology, Queensland University of

Technology, RMIT University, University of South Australia, and the University of Technology,

Sydney (http://www.labshare.edu.au/). This project aims at creating a national network of

shared remotely accessible laboratories. To do this, they have developed a framework for

setting up a heterogeneous remote laboratory of physical apparatuses containing many labs of

many types called SAHARA [11-13].

SAHARA, Figure 14, is composed by a set of elements:

● The Web Interface is the user interface to SAHARA Labs. Its roles include authenticating

a user, providing the interface for users to request access to a resource and providing

the interface to control a rig. It provides programmatic interfaces to implement aspects

such as how users are authenticated and presentation. It also includes a suite of

components for implementing the web interface associated with different rig types. A rig

is a physical item of laboratory apparatus.

● The Scheduling Server is the middleware component that manages the scheduling

processes of the remote laboratory rigs, including tracking the state of rigs and assigning

them to users based on either queued access or time-based reservations. It is also

responsible for managing the running sessions according to the allocated times as well

as logging all events and activities. The Scheduling Server is agnostic with regard to the

specific design of a rig and relies on a rig client application to turn scheduling requests

into rig specific behaviour. In SAHARA, a rig is a physical item of laboratory apparatus.

● The Rig Client provides a software abstraction of each rig and converts abstract

requests from the scheduling server into rig specific actions. If a user is being assigned

to the rig, its Rig Client provides the behaviour to actually allow the user to access the

rig. The Rig Client provides a programmatic interface to allow this behaviour to be

defined as a set of Java interfaces. The Rig Client manages the rig and sends status

updates to the Scheduling Server. If the Rig Client is not operating, from the perspective

of the Scheduling Server, the rig is not operational and no user will be assigned to it. The

Rig Client also provides a control channel to directly interface with the rig or as an

auxiliary to an external control program.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 38 of 52

Figure 14. Sahara architecture.

6.2 iLab Project

The iLab project started at MIT in 1998, with the goal of developing and implementing a

distributed software toolkit and middleware service infrastructure to support online laboratories,

and promote their sharing among schools and universities on a worldwide scale [14-16].

Therefore, MIT implemented the iLab Shared Architecture (ISA), focusing on fast platform-

independent laboratory development, scalable access for students, and efficient management

for laboratories providers, while preserving the autonomy of the faculty actually teaching the

students.

From the perspective of the ISA, at the present time, two types of online experiments can be

supported:

● Batch experiments. These are laboratories where experiments are completely specified

prior to submission and execution without human intervention. I.e.: the use of MIT‟s

Microelectronics iLab, where the student specifies the entire course of the experiment

before the experiment begins.

Therefore, the ISA batched architecture in some way resembles the typical three-tier

web business architecture, Figure 15.

● Interactive experiments. These experiments are fundamentally different from their batch

counterparts. Primarily, interactive experiments require taking control of the laboratory

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 39 of 52

hardware while the user sets the parameters and observes the results. This is exactly in

contrast to the batched model where experiments are queued and run when the

laboratory hardware is available. Therefore, an interactive experiment must commit the

laboratory hardware to a single user for the duration of the session - typically 20 minutes

to an hour – and may require scheduling.

Another main difference between interactive and batch laboratories involves the role of

the Service Broker. Interactive experiments require real-time control and potentially

much greater bandwidth between the laboratory client and the laboratory server. Due to

it, the batch notion of a Service Broker that uses web services to route all

communications between the laboratory client and laboratory server will not work

effectively in an interactive experiment.

An interactive iLab topology is detailed in the following, Figure 16. New elements are

added to the laboratory client, Service Broker, and laboratory server, such as:

a. The Experiment Storage Service.

b. The Scheduling Services.

c. Laboratory manager.

Figure 15. ILab architecture for batched experiments.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 40 of 52

Figure 16. ILab architecture for interactive experiments.

6.3 WebLab-Deusto

WebLab-Deusto provides an open source, scalable, distributed software architecture that

makes easy to integrate new experiments, Figure 17. There are two types of experiments [17-

19]:

● Managed: the developer of the experiment software interaction must use any of the

common web technologies for the client side (JavaScript, Flash, Java applets), and any

technology for the server side (WebLab-Deusto comes with libraries for C/C++, .NET,

LabVIEW, Java and Python).

● Unmanaged: the experiment developer places an application in a Virtual Machine, and

WebLab-Deusto controls the access to the Virtual Machine.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 41 of 52

Figure 17. WebLab-Deusto architecture.

6.4 LiLa Project

LiLa is the acronym for the “Library of Labs”, an initiative of eight universities and three

enterprises for the mutual exchange of and access to virtual laboratories and remote

experiments (real laboratories which are remotely controlled via the internet [20-22]). To

accomplish this task, the e-learning standard called SCORM has been modified to communicate

with remote online labs, Figure 18.

LiLa also builds a portal through which the access to virtual labs and remote experiments is

granted. It includes services like:

● a scheduling system,

● connection to library resources,

● tutoring system,

● 3D-environment for online collaboration

http://www.lila-project.org/about/consortium/index.html
http://www.lila-project.org/about/consortium/index.html
http://www.lila-project.org/about/consortium/index.html
http://www.lila-project.org/content/index.html
http://www.lila-project.org/content/index.html
http://www.lila-project.org/content/index.html

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 42 of 52

Figure 18. SCORM modified to communicate with remote online labs.

Although the LiLa project bundles labs in SCORM packages, proper interoperability among the

different labs is not always possible since SCORM has not been designed for interactive labs

and there is lack of support of the latest versions of SCORM (see deliverable D5.2).

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 43 of 52

7 Appendix B: Arduino

The microcontroller Arduino (http://www.arduino.cc) has a set of features that make it a strong

candidate to implement the smart device specifications.

● Hardware. The versatility of the Arduino is its hardware. Technically the Arduino UNO is
a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a
16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a
reset button. It contains everything needed to support the microcontroller; simply
connect it to a computer with a USB cable or power it with an AC-to-DC adapter or
battery to get started. This is the heart and the potential of the system.

The fact of having analog and digital pins can perform functions as diverse as motor
control (analog systems) or on-off emulation through them using voltage pulses LOW-
HIGH (digital systems). This greatly expands the range of applications of an integrated
system with arduino UNO.

● Plug & Play. The above features and physiology of the Arduino board itself, Figure 19,

allows on one hand an easy connection of the board to the PC via a simple USB cable,

but on the other hand also allows an easy installation of other hardware laboratory to

board with wires simply stabbing the respective laboratory to analog and digital pins of

the board.

Figure 19. Arduino UNO Board.

Another advantage inherent in this hardware is that it has its own software and install its

own drivers that facilitate the installation of the entire system on any PC. This makes the

system compatible with Windows, Linux or Mac OS X.

● Easy Programming. All Products Arduino software comes with its own installation
software. The software (in its current version 1.0.5) contains everything you need to
install the board, the corresponding driver, and begin programming the Arduino.

http://www.arduino.cc/

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 44 of 52

Contains examples predesigned and commented that the new users can modify and
adapt to their needs easily.

Figure 20 shows a picture of the software. It clearly shows that the programming

language used is C. Easy to learn and enough stability, the use of C helps further to

generalize increasingly using Arduino for laboratories that wish to integrate electronics

and software in a single tool.

Figure 20. Arduino software in action.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 45 of 52

8 Appendix C: G4Labs

8.1 Introduction

As described in Section 4, the Smart Gateway acts as a legacy labs converter to the

specifications defined in this deliverable. This involves different steps, being one the conversion

of the data exchange (i.e., the communication protocol), and other the reservation process (i.e.,

bypassing the authentication, authorisation and scheduling mechanisms).

This Appendix is focused on this latter step (reservation process), which is implemented on top

of the G4Labs system. It is organized as follows: first, the early prototype is described, then the

G4Labs system and the adaptation done to be integrated in the Go-Lab is detailed, and finally

two scenarios relying on G4Labs are shown.

8.2 Initial prototype

Before using the G4Labs system, an early prototype of the integration of an external remote

laboratory management system has been implemented, named wlwidget. The target of wlwidget

was to act as a bridge between WebLab-Deusto (and all the labs contained in WebLab-Deusto)

and the Go-Lab Portal. This bridge has been used for demonstration purposes with the

Aquarium laboratory, implemented in WebLab-Deusto.

So as to explain this bridge, it‟s important to explain briefly what WebLab-Deusto is, and what

the Aquarium laboratory is. WebLab-Deusto is a remote laboratory management system. It is an

open source system that a lab owner can download, install, and develop laboratories on top.

WebLab-Deusto provides authentication, authorisation, federation, user tracking, and

communications management through different mechanisms. Multiple laboratories have been

implemented using WebLab-Deusto in different universities. One of these laboratories is the

aquarium laboratory, which allows students to drop different balls with 4 colours containing

different liquids into an aquarium. Figure 21 shows how this laboratory was originally developed

using WebLab-Deusto.

This way, the Aquarium lab is an example of legacy remote laboratory to be interfaced through

the Smart Gateway.

The wlwidget system acts as a gateway for this laboratory (and for any laboratory developed in

WebLab-Deusto). Using it, it is possible to be consumed through the Go-Lab Portal, and

wlwidget would provide the WebLab-Deusto system who was the user being connected (e.g.,

“user 122” or “anonymous user”), and would wrap the underlying scheduling mechanism (a

queue). It provided an automated system for providing URLs to define each of the different apps

(being an app the red ball, another app the blue ball, another app the camera 1, etc.).

This way, it was possible to use the Go-Lab Portal to exploit it in an inquiry learning scenario

using it, as shown on Figure 22. WebLab-Deusto required small modifications to support that a

client requests a subset of the user interface (such as the blue ball), and the aquarium was

adapted. This way, it was possible to use the Aquarium lab from an inquiry learning space and

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 46 of 52

from the WebLab-Deusto system at the same time, since in the Go-Lab portal would

conceptually act as a WebLab-Deusto node when using the wlwidget bridge.

Figure 21. Original Aquarium user interface as developed in WebLab-Deusto.

Figure 22. An aquarium lab separated in different apps in an inquiry learning space (ILS)

using wlwidget.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 47 of 52

The wlwidget provided the following features:

● Authentication: internally, this system connected to the WebLab-Deusto system with a

particular username and password (always the same), but reported the system that it

was being used by a foreign user, providing the user identifier at the ILS.

● Scheduling: in WebLab-Deusto, there is a concept of reservation. The user interface in

wlwidget had to be loaded in different apps, but the desired behavior was that all of them

were using the same reservation. So as to do this, wlwidget applied a master/slave

concept, where all the apps decide that one of them is the “master”, and display a

button, and the rest assume that they are “slaves”. Whenever the user clicks on the

button, a reservation is requested, and that reservation identifier is shared with the rest

of the apps in the same web browser. This is represented in Figure 23.

● User tracking: the wlwidget server is periodically requesting WebLab-Deusto the status

of the reservations submitted. Whenever one is finished (i.e., the user closed the window

or the assigned time finished), it downloaded what the user had done and serialized to

Activity Streams. However, it never submitted those to any other system.

As an early prototype, it did not implement certain features:

● The integration in ILS was simple, and did not use extensively the OpenSocial APIs.

● It only supported WebLab-Deusto laboratories, and no other remote laboratory

management systems.

● It did not support any type of internationalization (so the default language was always

used)

● It did not support dragging and dropping apps once the lab was running. Since the

master Web app shared the reservation identifier only once, it was not stored by the rest

and shared to newly reload apps.

● It did not support that in a single space there could be more than one type of laboratory.

All the apps had to be part of the same particular WebLab-Deusto laboratory.

So as to deal with these features, and especially with the first one (supporting more legacy

laboratories), it was decided to adapting the bridge relying on G4Labs, which has been

explained in Section 4.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 48 of 52

Figure 23. wlwidget in ILS before starting the interaction. Those apps requiring

interaction were not loaded from the very beginning: they relied on a master (in the

Figure, “Camera 2”) and the user had to click on it to start the process. The other apps

(e.g., “Yellow ball” in the Figure) were slave apps waiting for the master to share the

single reservation identifier.

8.3 Integration of G4Labs in the Go-Lab Portal

The underlying technology of the Go-Lab Portal, Apache Shindig, provides a secure mechanism

based on tokens for enabling third party services to access information about the current user,

app and space. Both wlwidget and the integration of G4Labs used this feature to identify the

user (as long as the user is signed in). In most scenarios, the user identification itself is not used

since students are not logged in; however, it still provides statistical information regarding the

context from which the laboratory is consumed.

The developed model is open to everyone, meaning that schools can use and harness Go-Lab

technologies straight-away, needing no registration.

Though the main approach to Go-Lab is supporting anonymous, not registered users, the goal

of the Smart Gateway is to use already existing remote labs or legacy labs. These legacy labs

will be provided by the external lab owner.

The most basic interaction has been developed and will be used as the basis for the

development of future remote labs requirements. What follows is the description of these

functionalities. They are therefore optional and most teachers and students will not see them,

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 49 of 52

but in certain circumstances (e.g., an external lab owner who requests to know which schools

are using their resources), they would be useful.

8.4 Comparison with the initial prototype

G4Labs supports the features of the initial prototype (wlwidget), explained above. Additionally,

since it is not a prototype, but stable software targeting large-scale scenarios, more work has

been done in polishing the result. Therefore, when compared with the early prototype:

● It supports multiple RLMS and not only WebLab-Deusto. It provides an API that can be

used by the rest of the legacy RLMSs to be supported.

● It supports multiple different labs per space, and it manages that the different apps of

one lab do not communicate with the different apps of other lab.

● It supports both an anonymised model, where students use the system from the Go-Lab

portal with the RLMS unaware of the particular schools and users, but it also supports an

authorized model where teachers register their schools in the tools and certain labs are

only available to certain schools.

● It drops the master/slave decision model used in wlwidget. At the beginning, all apps are

master apps, and when the user clicks on the reserve button of one of them, all the rest

of the same laboratory act as slaves. This is not only more stable and simple, but it also

supports that moving apps in the space is supported.

G4Labs does not provide any data conversion for the communications between the final client

(the student) and the final laboratory. It does not proxy it, so it basically enables that the

connection is direct. Therefore, there is no impact on performance during the usage of the

laboratory.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 50 of 52

References

[1] J. García-Zubia, P. Orduña, D. López-de-Ipiña and G.R. Alves, “Addressing Software Impact
in the Design of Remote Laboratories”, IEEE Transactions on Industrial Electronics, Vol. 56, Nº.
12, pp. 4757– 4767, December 2009.

[2] M. Morozov, A. Tanakov, A. Gerasimov, D. Bystrov and E. Cvirco, “Virtual Chemistry
Laboratory for School Education”, IEEE International Advanced Conference on Learning
Technologies, ICALT, Joensuu (Finland), 30 Aug.-1 Sept. 2004.

[3] Z. Raud and V. Vodovozov, “Virtual lab to study power electronic converters”, International
Symposium on Power Electronics Electrical Drives Automation and Motion, SPEEDAM, Pisa
(Italy), 14-16 June 2010.

[4] L. Gomes, and S. Bogosyan, “Current Trends in Remote Laboratories”, IEEE Transactions
on Industrial Electronics, Vol. 56, Nº. 12, pp. 4744– 4756, December 2009.

[5] M.A. Vivar and A.R. Magna, “Design, implementation and use of a remote network lab as an
aid to support teaching computer network” Third International Conference on Digital Information
Management, ICDIM, London (UK), 13-16 November 2008.

[6] J.M. Andújar, A. Mejías and M.A. Márquez, “Augmented Reality for the Improvement of
Remote Laboratories: An Augmented Remote Laboratory” IEEE Transaction on Education, Vol.
54, Nº. 3, pp. 492–500, August 2011.

[7] A.G. Vicente, I. Bravo Muñoz, J.L. Galilea and P. A. Revenga del Toro, “Remote Automation
Laboratory Using a Cluster of Virtual Machines”, IEEE Transactions on Industrial Electronics,
Vol. 57, Nº. 10, pp. 3276–3283, October 2010.

[8] J. Hu, M. Haffner, S. Yoder, M. Scott, G. Reehal and M. Ismail, “Industry-Oriented
Laboratory Development for Mixed-Signal IC Test Education”, IEEE Transactions on Industrial
Electronics, Vol. 53, Nº. 4, pp. 662– 671, November 2010,

[9] G. Andria, A. Baccigalupi and M. Borsic, Remote Didactic Laboratory “G. Savastano,” The
Italian Experience for E-Learning at the Technical Universities in the Field of Electrical and
Electronic Measurements: Overview on Didactic Experiments”, IEEE Transactions on
Instrumentation and Measurement, Vol. 56, Nº. 4, pp. 1135–1147, August 2007.

[10] A. Rojko, D. Hercog and K. Jezernik, “Power Engineering and Motion Control Web
Laboratory: Design, Implementation, and Evaluation of Mechatronics Course”, IEEE
Transactions on Industrial Electronics, Vol. 57, Nº. 10, pp. 3343–3354, October 2010.

[11] E. Lindsay and B. Stumpers. “Remote laboratories: enhancing accredited engineering
degree programs,” Proceedings of the 2011 AAEE Conference, Fremantle, Western (Australia),
2011.

[12] D. Lowe, C. Berry, S. Murray and E. Lindsay. “Adapting a Remote Laboratory Architecture
to Support Collaboration and Supervision”, REV 2009: 6th International Conference on Remote
Engineering and Virtual Instrumentation, M. Auer, N. Gupta and J. Pallis, Eds. Bridgeport, USA:
International Association of Online Engineering, pp. 103-108, June 2009.

[13] D. Lowe, S. Murray, E. Lindsay and D. Liu. “Evolving Remote Laboratory Architectures to
Leverage Emerging Internet Technologies” IEEE Transactions on Learning Technologies, Vol.
2, Nº. 4, pp. 289-294, October 2009.

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 51 of 52

[14] V.J. Harward et al. "The iLab Shared Architecture: A Web Services Infrastructure to Build
Communities of Internet Accessible Laboratories," Proceedings of the IEEE, vol.96, Nº.6,
pp.931-950, June 2008.

[15] J. Hardison and D.G. Zutin. “Online Workbenches for the Deployment of Electronics
Experiments,” conditionally accepted for publication in Internet Accessible Remote Laboratories,
IGI Global, 2011.

[16] E. San Cristobal Ruiz, M.A. Castro Gil, V.J. Harward, P. Baley, K. DeLong, and J. Hardison.
"Integration View of Web Labs and Learning Management", IEEE Educon 2010, April 14-16,
Madrid (Spain), 2010.

[17] J. García Zubia, P. Orduña, D. López de Ipiña and G. Alves. “Addressing Software Impact
in the Design of Remote Labs”, IEEE Transactions on Industrial Electronics, ISSN: 0278-0046;
DOI: 10.1109/TIE.2009.2026368. Vol. 56, Nº 12, pp. 4757-4767, December 2009.

[18] J. García Zubia, P. Orduña, I. Angulo, J. Irurzun and U. Hernández. “Towards a Distributed
Architecture for Remote Laboratories”, International Journal of Online Engineering (iJOE), ISSN:
1861-2121. Special Issue, REV 2008, Vol. 4, 2008.

[19] P. Orduña, J. Irurzun, L. Rodriguez-Gil, J. Garcia-Zubia, F. Gazzola and D. López-de-Ipiña.
“Adding New Features to New and Existing Remote Experiments through their Integration in
WebLab-Deusto”, International Journal of Online Engineering (iJOE), ISSN: 1861-2121, Vol. 7,
2011.

[20] L. Bellido, V. Villagrá and V. Mateos. “Federated authentication and authorization for
reusable learning objects”, IEEE EDUCON Education Engineering 2010 – The Future of Global
Learning Engineering Education, April 14-16, Madrid, Spain, 2010.

[21] Y. Tetour, T. Richter and D. Boehringer. “Integration of Virtual and Remote Experiments
into Undergraduate Engineering Courses”, Joint International IGIP-SEFI Annual Conference
2010, Trnava, Slovakia, 19th - 22nd September, 2010.

[22] V. Mateos, A. Gallardo, T. Richter, L. Bellido, P. Debicki and V. Villagra. “LiLa Booking
System: Architecture and Conceptual Model of a Rig Booking System for On-Line Laboratories”,
International Journal of Online Engineering (iJOE), vol. 7, issue 4, pp. 26-35, 2012.

[23] J. Zheng, D. Simplot-Ryl, C. Bisdikian, H.T. Mouftah. “The internet of things”,
Communications Magazine, IEEE, Volume: 49, Issue: 11, Page(s): 30- 31, 2011.

[24] G. Kortuem, A.K. Bandara, N. Smith, M. Richards and M. Petre. “Educating the Internet of
Things Generation”, Computer, IEEE, Volume: 46, Issue: 2, Page(s): 53-61, 2013.

[25] S. Tozlu, M. Senel, M. Wei and A. Keshavarzian. “Wi-Fi enabled sensors for internet of
things: A practical approach” Communications Magazine, IEEE, Volume: 50, Issue: 6, Page(s):
134-143, 2012

[26] C. Doukas. “Building Internet of Things with the Arduino (Volume 1)”. Editorial: createspace,
Pages: 348, ISBN: 978-1470023430, 2012.

[27] Arduino Web page http://arduino.cc/en/Reference/HomePage accessed at 30 September
2010.

[27] Wiring Web page http://wiring.org.co/ accessed at 30 September 2010.

http://arduino.cc/en/Reference/HomePage
http://wiring.org.co/

Go-Lab D4.1 Specifications of the lab-owner services and cloud services - Initial

Go-Lab 317601 Page 52 of 52

[28] Raspberry pi web http://www.raspberrypi.org/ accessed at 30 September 2010.

[29] Raspberry pi (Linux) http://elinux.org/RPi_Hub accessed at 30 September 2010.

[30] D. Cohen, M. Lindvall, and P. Costa. “An introduction to agile methods”. Advances in
Computers. Elsevier Science, 2004.

[31] Ch. Salzmann, D. Gillet, F. Esquembre, H. Vargas, J. Sánchez and D. Sebastián. “Web 2.0
open remote and virtual laboratories in engineering education”. Book Chapter: Collaborative
Learning 2.0: Open Educational Resources, by IGI Global pp.369-390, 2012.

[32] T. Richter, P. Grube and D. Zutin. “A standardized metadata set for annotation of virtual
and remote laboratories”, IEEE International Symposium on Multimedia (ISM). Irvine
(California), December 2012.

[33] The WebSocket Protocol. http://tools.ietf.org/html/rfc6455, accessed at 09 September 2013.

[34] JSON. http://www.json.org/, RFC 4627, accessed at 09 September 2013.

[35] C.W. Thompson. "Smart devices and soft controllers". IEEE Internet Computing, Vol. 9, Nº
1, pp. 82-85, 2005.

http://www.raspberrypi.org/
http://elinux.org/RPi_Hub
http://tools.ietf.org/html/rfc6455
http://www.json.org/
http://tools.ietf.org/html/rfc4627

