
Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

Deliverable D4.7

Releases of the Lab Owner and Cloud
Services (Final) – M33

Editors Wissam Halimi (EPFL)
Sten Govaerts (EPFL)

Date 30th July, 2015
Dissemination Level Public
Status Final

c©2015, Go-Lab consortium

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Go-Lab 317601 2 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

The Go-Lab Consortium

Beneficiary
Number

Beneficiary Name Beneficiary
short
name

Country

1 University Twente UT The Nether-
lands

2 Ellinogermaniki Agogi Scholi
Panagea Savva AE

EA Greece

3 École Polytechnique Fédérale de
Lausanne

EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Edu-
cación a Distancia

UNED Spain

8 University of Leicester ULEIC United King-
dom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technol-
ogy Hellas

CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten -
Gemeinnützige Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear

Research
CERN Switzerland

16 European Space Agency ESA France

17 University of Glamorgan UoG United King-
dom

18 Institute of Accelerating Systems
and Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab 317601 3 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Contributors

Name Institution
Wissam Halimi, Sten Govaerts, Christophe Salzmann,
Denis Gillet

EPFL

Pablo Orduña UDEUSTO
Danilo Garbi Zutin CUAS
Irene Lequerica UNED

Eleftheria Tsourlidaki (Internal Reviewer) EA

Lars Bollen (Internal Reviewer) UT

Legal Notices
The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which
may be made of the information contained therein.

Go-Lab 317601 4 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Executive Summary
This deliverable is the corresponding companion of D4.5 Specifications of the
Lab Owner and Cloud Services. The latter deliverable has been submitted at
M30, and is the final document detailing the solution devised by Go-Lab for in-
tegrating new and legacy remote laboratories (labs) in its infrastructure. Go-Lab
provides two approaches to integrate remote laboratories: the Smart Device
and the Smart Gateway approaches. While the first corresponds to the develop-
ment and deployment of new labs, the second is destined for existing labs. Yet,
both implement the Smart Device Paradigm as presented in D4.5, and briefly
presented in the Introduction of this document. Starting from the specifications
presented in D4.5, lab owners are expected to be able to create/adapt and
smoothly deploy their labs in the Go-Lab platform.

In this deliverable we provide templates for lab owners to use in order to inter-
face their new physical labs with embedded devices (the Smart Devices). The
templates provide the architecture skeleton for the laboratory server applica-
tion following the Smart Device paradigm. The templates implement a set of
specifications to ensure that they are scalable, readable, and maintainable; in-
suring the ease and augmented use of these templates. Using the templates,
lab providers are not concerned about the architecture of their lab servers. This
task is alleviated by the templates. The targeted platforms are Node.js on Bea-
gleBone Black (BBB), and LabVIEW on myRIO . We also provide example labs
implemented with the produced packages, as well as with other platforms and
technologies.

We also provide support for existing online laboratory systems with the Smart
Gateway. The Smart Gateway supports both real laboratories (e.g. Remlab-
net) and simulation (e.g. Concord, QuVis). The integration of these labs in the
Go-Lab infrastructure with the Smart Gateway means that all current and future
laboratories provided by these systems are and will be automatically available
for Go-Lab consumption. Each of these systems offers more than 20 labo-
ratories at the moment, which is a good gain for the project. Additionally, new
developed features of the Smart Gateway since D4.3 are presented, such as the
support of internationalization of external laboratories, and new mechanisms for
the integration of laboratories (HTTP plug-in examples).

Go-Lab 317601 5 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Table of Contents

1 Introduction 8
1.1 Smart Device Overview . 8
1.2 Smart Gateway Overview . 9
1.3 Repositories of Templates and Examples 9

2 Releases of Lab Owner Services 10
2.1 Lab Owner Services Final Release Compared to the Initial Release 10
2.2 Overview . 10

2.2.1 Templates Requirements 11
2.2.2 Templates Specifications 11

2.3 Templates . 12
2.3.1 Platforms Choices . 12
2.3.2 Templates Structure . 15
2.3.3 How to Use . 17

2.4 Examples . 24
2.4.1 Angular Position Control of an Electrical Drive: a LabVIEW

Example on Desktop . 24
2.4.2 Angular Position Control of an Electrical Drive: a LabVIEW

Example on myRIO . 25
2.4.3 Savonius VA Wind Turbine Control: a LabVIEW Example

on myRIO . 26
2.4.4 Savonius VA Wind Turbine Control: a Node.js Example on

BBB . 28
2.4.5 Angular Position Control of a Mini-Servo Motor: a Node.js

Example on BBB . 29
2.4.6 Robot Arm: a Node.js Example on Raspberry Pi 30

3 Releases of Cloud Services 32
3.1 Cloud Services Final Release Compared to the Initial Release . 32
3.2 Introduction . 32
3.3 The Smart Gateway Architecture 33
3.4 The Smart Gateway Software . 34

3.4.1 Support for Standards . 36
3.4.2 Existing Features . 37
3.4.3 Support for remote laboratories: The plug-in system . . . 37
3.4.4 New features . 42
3.4.5 Demo and Software Repository 45
3.4.6 A prototype of the protocol translator 46
3.4.7 Summary of the benefits for integrated remote laboratories 49

3.5 Smart Gateway Plug-in Releases 50
3.5.1 WebLab-Deusto . 50
3.5.2 iLab Shared Architecture (ISA) 52
3.5.3 PhET . 54
3.5.4 ViSH . 55

Go-Lab 317601 6 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

3.5.5 UNR-FCEIA . 56
3.5.6 Remlabnet . 57

4 Conclusion 59

5 Appendix A 60
5.1 BBB Description . 60
5.2 myRIO Description . 62

6 Appendix B 65
6.1 Queued Message Handler Design Pattern 65

7 Appendix C 66
7.1 Recommendation #1: Running Servers on Ports 80 or 443 66
7.2 Recommendation #2: Methods for Video Streaming 66

7.2.1 Video Streaming with IP cameras 66
7.2.2 Video Streaming with USB cameras 67

8 Appendix D 68
8.1 Brief history of gateway4labs . 68
References . 70

Go-Lab 317601 7 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

1 Introduction
Remote experimentation consists of operating and observing a physical labora-
tory at distance over the Internet, by communicating with sensors and actuators.
A common abstraction of the architecture enabling such manipulations consists
of two major components: a client application and a lab server. Figure 1 depicts
this architecture:

Figure 1: Common Architecture for Remote Laboratories

Interaction with the Physical Lab begins with the User using the Client Appli-
cation which transmits User’s commands over the Internet to the Server Ap-
plication, which in turn controls the Physical Lab. We assume that the Client
Application and the Server Application communicate through the Internet, and
that the User Application is running in a Web Environment.

1.1 Smart Device Overview
Following the architecture presented in Figure 1, the Client Application and the
Lab Server are tightly coupled, in the sense that proprietary technology gov-
erns the communication between them (Salzmann, Govaerts, Halimi, & Gillet,
2015). The Smart Device Paradigm as presented in D4.5 aims at decoupling
the Client and Lab server applications. This is done by redesigning the Lab
Server to expose it through standardized interfaces. In other words, the Smart
Device Paradigm specifies the Lab Server as a set of well-described services
through an API that complies to the Specifications of the Lab Owner Services
presented in D4.5. This enables the separation between the two previously
tightly connected user client, and lab server sides.

The figure below describes the above:

Figure 2: Remote Labs Architecture with the Smart Device Paradigm

Go-Lab 317601 8 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

1.2 Smart Gateway Overview
The Smart Gateway paradigm aims at making existing labs compatible with the
Smart Device specifications. Due to the large technological variety of exist-
ing remote labs, the Smart Gateway offers 3 different compatibility levels with
the Go-Lab infrastructure as presented in D4.5 through its different adaptation
mechanisms. The Smart Gateway paradigm conceptualizes and embeds the
cloud services.

The figure below shows how the Smart Gateway fits in the remote lab architec-
ture:

Figure 3: Smart Gateway in the Remote Lab Architecture

1.3 Repositories of Templates and Examples
The work invested in this deliverable results in a number of packages (tem-
plates) for deploying new labs following the Smart Device Paradigm, corre-
sponding implemented remote labs, in addition to packages for legacy labs such
as ViSH, PhET, iLabs, WebLab-Deusto, and QuVis to ensure integration in the
Go-Lab infrastructure.

The template packages for the releases of the lab owner services can be found
here:

• https://github.com/go-lab/smart-device/tree/master/templates/.

And the corresponding links for the implemented examples for the different plat-
forms are:

• BeagleBone Black: https://github.com/go-lab/smart-device/tree/
master/BeagleBoneBlack

• Desktop Computer: https://github.com/go-lab/smart-device/tree/
master/Desktop

• myRIO: https://github.com/go-lab/smart-device/tree/master/myRIO

• Raspberry Pi: https://github.com/go-lab/smart-device/tree/
master/RaspberryPi

The packages for the releases of the Smart Gateway can be found here:

• https://github.com/gateway4labs

Go-Lab 317601 9 of 71

https://github.com/go-lab/smart-device/tree/master/templates/
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack
https://github.com/go-lab/smart-device/tree/master/Desktop
https://github.com/go-lab/smart-device/tree/master/Desktop
https://github.com/go-lab/smart-device/tree/master/myRIO
https://github.com/go-lab/smart-device/tree/master/RaspberryPi
https://github.com/go-lab/smart-device/tree/master/RaspberryPi
https://github.com/gateway4labs

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

2 Releases of Lab Owner Services
The releases of the the lab owner services are template software packages fol-
lowing the Smart Device Paradigm. The templates are meant to be used for
developing and deploying new remote laboratories. Examples of implemented
labs corresponding to the templates are also provided. This chapter first com-
pares the Releases of the Lab Owner Services in this deliverable with those in
D4.3, then details the Releases of Lab Owner Services through 3 main sec-
tions: Overview which presents the software requirements and specifications
of the packages, Templates which details the packages developed for targeted
platforms, and Examples which presents the implemented labs using the tem-
plates.

2.1 Lab Owner Services Final Release Compared to the Initial
Release

In D4.3, the Releases of the Lab Owner Services were example-based
templates implemented with different combinations of selected software and
hardware technologies. Lab owners are then provided with instructions in
order to reuse the examples, by modifying its code to make it respond to their
hardware and software requirements.

In this deliverable, we follow a different approach for the Releases of the Lab
Owner Services: we provide generalized templates with adequate instruc-
tions and recommendations to start from the provided packages and build a
complete application. The architecture of each of the templates is thoroughly
detailed. We also provide a concise explanation for the hardware and software
technology choices made for the respective templates.

Additionally, the examples presented in D4.3 underwent testing and bug fixing,
all updated code is available on the github repository (links to each lab are
provided in Section 2.4). As a proof of concept, new example labs have
been implemented using the templates of this deliverable: 2 wind turbine labs
presented in Section 2.4.3 and 2.4.4.

At last, new appendices are added to provide more technical information aid-
ing lab owners in selecting the adequate board for their labs. Appendix A
describes the boards, Appendix B provides information of a programming
paradigm adopted in one of the templates, Appendix C provides lab owners
with recommendations to enhance user experience.

2.2 Overview
The software packages presented in this deliverable follow the Smart Device
Paradigm. They set up the skeleton of the lab server application for lab owners.
The software templates implement a set of requirements to ensure their ease
of use and the efficient build up upon them.

Go-Lab 317601 10 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

In this section, we will present the software requirements of the templates pro-
vided for lab owners (the party using the templates), and the corresponding
specifications we (the party developing the templates) abide by in order to im-
plement those requirements.

2.2.1 Templates Requirements

Three requirements are respected in order to provide lab owners with a promise
of good usability:

1. Scalability: The template should be easy to extend to handle more work.
In other terms, if in the template data acquisition is implemented for one
sensor, it should be easy to extend the same functionality to any number
of extra sensors.

2. Readability: It should be easy to inspect the code and structure of the
application, understand its functionality, and the connection amongst its
components.

3. Maintainability: It should be easy to add new features to the code without
affecting the original implemented features.

2.2.2 Templates Specifications

Two specifications for the templates are devised in order to implement the re-
quirements presented in 2.2.1:

1. Data Specifications: The template assumes that incoming requests are in
JSON format, and outgoing responses are also in JSON. The template
consumes and produces JSON encoded data.This JSON data follows the
‘metadata’ specifications as detailed in D4.5.

2. Behavioral Specifications: Two main components comprise the software
package: an API Server and a Process Controller as depicted in figure
4. The API1 (Application Programming Interface) Server is the interface
between the lab server and the outside world. It takes care of receiving
requests, decoding them, and forwarding them to the Process Controller. It
also receives data from the Process Controller, adequately encodes them
into responses. The API Server sends and receives Interaction Data
from the Process Controller . The Process Controller senses the phys-
ical environment (through sensors) of the lab and makes changes to it
(through actuators). It is the hardware interfacing module that receives
data from the API Server and transforms them to commands to the Phys-
ical Lab. It also senses the Physical Lab and forwards the collected data
to the API Server.The Process Controller receives/sends experimental
data to API server .

1https://en.wikipedia.org/wiki/Applicationprogramminginterface

Go-Lab 317601 11 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 4: Software Template Architecture

2.3 Templates
The releases of the lab owner services provide templates for 2 platforms: a
Node.js platform and a LabVIEW platform. In this section we discuss the tech-
nological choices made for the platforms, the structure of the respective tem-
plates, and how to use them.

2.3.1 Platforms Choices

Node.js with BeagleBone Black

Currently there is a shift in hardware computing towards Javascript and
supported platforms such as the Beagle Family2. This is gaining popularity
as mini-computers are getting smaller in size and more powerful in computing
and communication capabilities. And so it is enabling the migration towards
high-level languages such as Javascript for physical computing from the classic
low-level languages such as C. Since it utilizes the Linux operating system, it
combines the capability of a traditional embedded platform with the power of
open-source Linux software (Molloy, 2014).

The BeagleBone Black3 is a single-board open hardware and software mini-
computer produced by Texas Instruments in association with a number of
smaller companies. Its hardware and software specifications provide support
for a large spectrum of applications:

• Processor: It’s an ARM Cortex processor with DDR3 RAMs, on-board
eMMC flash storage, 3D graphics accelerator, floating-point accelerator,
and 2 PRU microcontrollers. This translates to having different types of
on-board storage with fast access to memory, and support of optimized
Digital Signal Processing (DSP) applications.

• Software Compatibility: The system is Debian, Android, Ubuntu, and
more. Which means that developers have access to open source com-
munities and support, in addition to support for event-based physical pro-
gramming instead of C.

• Connectivity: The board disposed of a USB client for power and commu-

2http://beagleboard.org/
3http://beagleboard.org/black

Go-Lab 317601 12 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

nication, a USB host, Ethernet plug, HDMI plug, and 2x46 pin-headers.
This provides a large set of GPIOs and peripherals to interface. Also, the
headers can be differently configured to respond to applications needs.

The core strength of the Beagle family is its BoneScript. BoneScript is a Node.js
library specifically optimised for the Beagle family, and features familiar Arduino
function calls. It provides several functions useful for interacting with hardware
using JavaScript, alleviating the task of hardware interfacing by changing the
classic way of doing it with low-level languages.

Performing physical computing with JavaScript is different than performing it with
C; which might impose a learning curve upon migration to the BoneScript way.
C executes sequentially, and interrupts modify order of execution. JavaScript &
Node.js execute asynchronously using callbacks launched on events, listened
to by a continuous event loop 4. This new physical computing paradigm imposes
an another way of thinking an application and tackling it, but it is a move forward
for those who wish to make full use of all the BeagleBone Black software and
hardware powers.

Example Applications with BBB

1. Client-side RFID authentication (and general access control) for Pumping
Station: the system is developed on a BBB with a Sparkfun’s USB board
for RFID readers for hardware, and PS1Auth’s server-side RFID authenti-
cation on the backend. The client-side software is written in Go (Kridner,
2015).

2. Podtique: an antique podcast player. It is a modern-day MP3 player with
the look and feel of an antique radio. The prototype is built in the enclosure
of a 1936 Goldentone radio. The internals were removed, and replaced
with a BeagleBone Black-based system, and the necessary mechanical
components to reproduce the tuning dial movement. Tuning the radio se-
lects the playlist (or podcast) to be heard. Between stations pink noise is
mixed in to simulate static (Rick, 2015).

3. Internet Speedometer: using a BBB and its two Programable Realtime
Units (PRUs), the Internet Speedometer tests download times, and out-
puts the speed results visually to a tricolor LED strip (Karve & Worman,
2014).

4. Dirty Dish Detector: the project utilizes the BBB and a Logitech webcam.
An email and/or MMS are sent when an unclean sink is detected. Notifi-
cations will occur on every ‘status change’ in the sink. Thus when the sink
goes from ‘clean’ to ‘dirty’ (Normal & Kridner, 2014)

LabVIEW with myRIO

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a system-
design platform and development environment for a visual programming lan-

4http://beagleboard.org/Support/BoneScript

Go-Lab 317601 13 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

guage from National Instruments. The graphical language is named "G" (not
the same as G-code). LabVIEW is commonly used for data acquisition, instru-
ment control, and industrial automation applications on a variety of platforms
5. With this graphical programming syntax, it is simple to visualize, create, and
code engineering systems (NI, 2015a). With LabVIEW, it is quick and easy
to create GUIs to interact with applications and visualize data using included
charts, graphs, thermometers, and 2D and 3D visualization tools (NI, 2015b).
A LabVIEW program is based on a basic unit called the VI (Virtual Instrument)
which is composed of 3 components: the front panel which is the user interface,
the block diagram which fosters the G code, and the connector panel which pro-
vides a dynamic logo of the the created VI with wired inputs and outputs. The
last is used to represent the VI in the block diagrams of other, calling VIs. The
front panel is built using controls and indicators. Controls are inputs they allow
a user to supply information to the VI. Indicators are outputs they indicate, or
display the results.

The myRIO1900 board adopted in this document as the device for templates
is a portable reconfigurable I/O (RIO) device, manufactured in a way to make it
easy to LabVIEW beginners to develop and deploy a wide range of applications.
The main hardware and software specifications of myRIO1900 are:

• Processor: The board is equipped with an ARM Cortex-A9 processor, a
XilinxZ-7010 customizable FPGA, 667MHz, Dualcore, 512MB NVMemory,
and 512DDR3; which translates to benefiting from a powerful processor
and FPGA for DSP and real-time applications.

• Software Compatibility: LabVIEW is the main support programming lan-
guage, and the processor is running a real-time OS. This provides support
for event-based physical programming with the G programming language.

• Connectivity: The board has a USB client for power, a USB host, 10 AI
(Analog Input) channels, 6 AO (Analog Output) channels, 40 DI/Os (Dig-
ital Input/Output), AudioJacks, Accelerometer, LEDs, a push button, and
expansion port connectors (MXP). This wide range of IOs provides sup-
port for interfacing different peripherals.

LabVIEW adopts a data-flow programming model as opposed to the sequen-
tial order of execution of commands in most classical physical computing lan-
guages. With LabVIEW as well, programmers used to the C-way of physical
computing will face a learning curve to restructure the way code execution is
thought of6. In this case, parallelism defined by data capturing governs.

Example Applications with myRIO

1. myRIO FPGA Audio Pitch Changer: it changes the pitch of an audio signal
passing through the myRIO audio input and output ports. For example, the
signal connected to the "Audio In" port from an MP3 player is transformed
to a higher or lower pitched audio, which is connected to "Audio Out" port

5https://en.wikipedia.org/wiki/LabVIEW#Graphical_programming
6https://en.wikipedia.org/wiki/LabVIEW#Graphical_programming

Go-Lab 317601 14 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

on headphones. The pitch-shifting algorithm was developed using the fre-
quency domain pitch shifting method (Hughes, 2011) (Frobinson, 2014).

2. myRio Control and Telemetry system for Formula-Hybrid Racecar: Bull-
dogs Racing at Yale University designed and built a fully functioning race
car to compete at the 2014 Formula Hybrid International Competition. One
myRIO1900 was utilized to control all the vehicle’s drive systems, and
another to collect and transmit all data collected from the sensor suite
via WiFi to both an iOS mobile application and a LabVIEW base station
(Belter, Piper, & Durkin, 2014).

3. The myExplorer remote controlled vehicle: myExplorer is a remote con-
trolled vehicle that uses the myRIO device. myExplorer communicates
with the user’s laptop or desktop via WiFi, so their are no spatial limitations
to where the car and user are. myExplorer executes control commands for
its motion, while streaming video back to the computer, so that the user
knows where it is headed to (Petru, 2014).

2.3.2 Templates Structure

As previously mentioned, the templates set the skeleton for the software ap-
plication of the lab server. While some components of the application can be
commonly used as a start for its development, others are specific to the appli-
cation. More specifically, the templates are composed of 3 components:

1. A Process Controller Module: which is specific to the connected devices,
and cannot be included in the general template

2. An API Server Module: which is general to all labs implemented with the
Smart Device Paradigm. It is the module that serves the “metadata files”
of the labs. Given that the paradigm standardizes the “metadata” amongst
all connected labs in Go-Lab, this module is part of the template.

3. Communication between the Hardware Process Controller and the API
Server Modules: which is the vital part of the template and the most impor-
tant part to have working when starting with the application. Even though
the Process Controller Module cannot be generalized among the labs, it is
created with basic features such as Turn ON/OFF, and hooks are provided
with the API Server Module.

The BBB Template

Since the BeagleBone Black template is a Node.js application, it naturally fol-
lows the conventional Node.js application structure. It is as follows:

1. node_modules directory: contains dependency modules for the Node.js
project. Commonly used modules are already included: binaryjs for binary
streaming with WebSockets, jsonfile to read and write JSON files, mo-
ment to capture the current date and time, q for creating and composing
asynchronous promises in JavaScript, and ws the RFC-6455 WebSocket
implementation for Node.js.

Go-Lab 317601 15 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

2. metadata directory: contains template “metadata” files for the lab and
sensors/actuators. It has the required metadata files: metadata.json,
getClients.json, getSensorData.json, getSensorMetadata.json, getActua-
torMetadata.json, sendActuatorData.json. The purpose of each of these
files is further explained in later sections.

3. bbb-process-controller.js file: contains the controller code in which func-
tions are defined to sense and control the connected lab to the board.
In this file, BoneScript is used in order to interface with the hardware. A
matter detailed in a coming section.

4. websocket-server.js file: contains the code for the server written in
JavaScript, accepts and responds to incoming requests using the Web-
Socket protocol. It ensures communication between the API (metadata)
and bbb-process-controller.js

The template can be found here: https://github.com/go-lab/smart-device/
tree/master/templates/bbb

The myRIO Template

This template has a very packed structure composed of many VIs, libraries, and
folders. It follows the LabVIEW Object Oriented7 (LVOOP) paradigm, and im-
plements the Queued Message Handler (QMH) approach for managing events.
QMH is biefly detailed in Appendix B. Not all files in this structure are of inter-
est to the lab owner reusing the G code. In this section, we will only detail the
essentials of this template:

1. Test_full_comm4.vi: This VI is the equivalent known Main.vi in a LabVIEW
project. It is composed of 3 main parts. The first initialises the services
and the hardware used in a sequence structure. The second starts the ap-
plication and services for logging, user client, and lab server. The third and
last part handles quitting the application by quitting and killing all running
‘workers’ and stopping all called subVIs.

2. WebSocket directory: This directory gathers all VIs that take care of im-
plementing the WebSocket standard in LabVIEW. It contains the code for
acknowledging requests, getting request headers, encoding, and stream-
ing requests.

3. JSON directory: All needed VIs for encoding and decoding JSON-
encoded requests and replies according the Smart Device Specifications
are found in this directory.

4. services directory: This directory has 2 sub-directories: PID and Video.
The PID sub-directory includes the code that takes care of configuring,
initializing, and controlling the connected hardware of the lab. The Video
sub-directory has the code for handling video streaming through a USB-
connected webcam to the board.

7http://www.ni.com/white-paper/3574/en/

Go-Lab 317601 16 of 71

https://github.com/go-lab/smart-device/tree/master/templates/bbb
https://github.com/go-lab/smart-device/tree/master/templates/bbb

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

5. HTML directory: It holds the VIs taking care of serving the ‘metadata’
as per the adopted specifications in Go-Lab, in addition to servicing user
client as OpenSocial widgets or HTML-JavaScript web pages.

The template can be found here: https://github.com/go-lab/smart-device/
tree/master/templates/myRIO

2.3.3 How to Use

This section provides a detailed tutorial for the lab owner to get started with the
provided templates. There are 2 tutorials, for the BBB and the myRIO respec-
tively.

BBB Template

Referring to the section 2.3.2 as reference for the application structure, this
tutorial shows how to get started on the BBB template for the development and
deployment of new labs.

Step 1: Setting Up the Development Environment

This first step for setting up the development environment is written for Macs
as target platforms. For Linux based system, this procedure is very similar,
with some obvious difference to Linux users. As it is for Windows users, it is
recommended that they install Cygwin8 which provides a Linux-like environment
on Windows.

First, 2 drivers need to be installed:

1. Network Driver

2. Serial Driver

You can find the suitable distributions for your system on this webiste: https://
learn.adafruit.com/ssh-to-beaglebone-black-over-usb/overview.

Once the BeagleBone Black shows as a connection in your Network settings,
you can proceed to ssh-ing your BBB. To do so, you simply need to type the
following in your terminal:

ssh 192.186.7.2 -l root

You can also find some additional information, on the previously mentioned web-
site.

Second, you need to make sure that the board has the latest Angstrom distribu-
tion installed:

cat /media/BEAGLEBONE/ID.txt

8https://www.cygwin.com/

Go-Lab 317601 17 of 71

https://github.com/go-lab/smart-device/tree/master/templates/myRIO
https://github.com/go-lab/smart-device/tree/master/templates/myRIO
https://learn.adafruit.com/ssh-to-beaglebone-black-over-usb/overview
https://learn.adafruit.com/ssh-to-beaglebone-black-over-usb/overview

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

In case of a needed update, these links are useful for:

• Updating the software: http://elinux.org/Beagleboard:Updating_The
_Software

• Installing operating systems: https://learn.adafruit.com/beaglebone
-black-installing-operating-systems/

Third, an Internet connection needs to be shared with the board in or-
der to download the template code. We will refer to this video tutorial for
setting up the internet connection in the BBB: http://www.youtube.com/
watch?v=Cf9hnscbSK8

Please note that you need to make a distinction between BBB arriving before
and after November 2013.

Those are the steps to follow:

1. Connect your BBB to your computer using the USB cable coming with the
board. To know to which socket on the board you need to plug the cable,
refer to the one-page catalogue coming with the board.

2. Once your BBB is recognized by the system, and is present on the net-
work, eject it from the Finder; but keep the board connected to the com-
puter with the cable.

3. Go to System Preferences → Sharing. On the left column in the window,
check "Internet Sharing" and in the right column, check BeagleBoneBlack.
This should allow sharing the internet of your computer with the Beagle-
Bone Black.

4. Open the terminal and:

screen /dev/tty.usb* 115200

if you are using a BBB shippped after November 2013. Otherwise:

screen /dev/tty.usb*B 115200

Your BBB’s USB might not be connected to tty.usb. Go to the /dev directory
and check which tty.usbXXX is corresponding the connection with your
BBB. For example, in my case it was tty.usb133.

5. Use root for the login to the beaglebone

6. Next you need to:

udhcpc -i usb0

After this step, if all is alright, you should be able to ping www.google.com
for example.

7. Next you need to:

ifconfig

Go-Lab 317601 18 of 71

http://elinux.org/Beagleboard:Updating_The_Software
http://elinux.org/Beagleboard:Updating_The_Software
https://learn.adafruit.com/beaglebone-black-installing-operating-systems/
https://learn.adafruit.com/beaglebone-black-installing-operating-systems/
http://www.youtube.com/watch?v=Cf9hnscbSK8
http://www.youtube.com/watch?v=Cf9hnscbSK8
www.google.com

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

8. Kill the screen. The shortcut is Ctrl+a+\.

At this stage, you are connected to the Internet and you are able to do whatever
you wish to do over the Internet. To have access again the memory of you
beaglebone, you need to:

ssh root@beaglebone.local

Step 2: Cloning the Github Repository on the BBB

After making sure that git is installed, the code can be cloned from the repos-
itory. For more information on how to install git, you can refer to this website:
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

To clone the repository, execute the command:

git clone https://github.com/go-lab/smart-device.git

The template resides in the directory: smart-device/templates/bbb

Step 3: Getting Started with the Template

The BBB is specifically conceptualized to be dynamic, enabling developers to
create their own custom configurations and extensions known as “Capes”. The
board can change its hardware configuration at runtime using its in-kernel mech-
anism : the “Cape Manager” with the help of the “Device Tree Overlays”.

The Device Tree is made of a set of human readble files of the type DTS
(Device Tree Source), ending with the extension “.dts”. The DTS files
are editable with a simple text editor such as VI, to set the configura-
tions for pins. The DTS files are source files compiled into DTB files (bi-
nary files) ending with “.dtbo”. Those files are knows as device tree frag-
ments of overlays. The Cape Manager then dynamically loads and un-
loads the DTB files on boot, and on runtime to set the hardware config-
uration of the board. More information can be found in Adafruit’s intro-
duction to the BBB Device Tree : https://learn.adafruit.com/downloads/
pdf/introduction-to-the-beaglebone-black-device-tree.pdf and on this
web page: http://elinux.org/BeagleBone_and_the_3.8_Kernel#Device
_Tree.27s_data_driven_model (Parvizi, 2013).

Having concisely introduced the hardware configuration of the BBB, we can get
started on the code of the template. First, let’s start with the file bbb-process-
controller.js:

Listing 2.1: Initialization of Process Controller
1 function bbbProcess(processPath, param) {
2 // param to be replaced with the process param to control/sense.

Go-Lab 317601 19 of 71

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://learn.adafruit.com/downloads/pdf/introduction-to-the-beaglebone-black-device-tree.pdf
https://learn.adafruit.com/downloads/pdf/introduction-to-the-beaglebone-black-device-tree.pdf
http://elinux.org/BeagleBone_and_the_3.8_Kernel#Device_Tree.27s_data_driven_model
http://elinux.org/BeagleBone_and_the_3.8_Kernel#Device_Tree.27s_data_driven_model

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

3 // e.g. period, duty cycle...
4 bbbProcess.PARAM = param;
5 bbbProcess.RUN_PATH = processPath + ‘run’;
6 bbbProcess.PARAM_PATH = processPath + ‘param’;
7 this.configureDevice();
8 }

This function is to initialize the Process Controller, it dynamically provides the
path to the configuration files that the lab owner will take care of creating and
populating. Regardless of the chosen path, 2 functions are provided in this con-
troller code: turn on/off the process and configure one parameter. Respectively,
the files are given directory locations. Once the Process Controller is initialized,
the configuration function is called in line 7 of listing 7.1:

Listing 2.2: Device Configuration
1 //process initialization/configuration
2 bbbProcess.prototype.configureDevice = function () {
3 var _this = this;
4

5 this.writeFile(bbbProcess.RUN_PATH, ’1’).then(function () {
6 //process initialization code
7 // param to be replaced with the process param to control/sense.
8 // e.g. period, duty cycle...
9 return _this.writeFile(bbbProcess.PARAM_PATH, bbbProcess.PARAM);

10 }).then(function () {
11 console.log(’Process Configured...’);
12 }, _this.errorHandler).done();
13 };

The configuration function uses the 2 available configuration data: turn on the
process by writing the value 1 to the file responsible for turning on/off the pro-
cess, and configure the general parameter param by writing the value bbbPro-
cess.PARAM to the file responsible for configuring parameter param.

Next come 4 general purpose functions: writeFile, turnOn, turnOff, and set-
Param.

Listing 2.3: Write to Pin Configuration File
1 bbbProcess.prototype.writeFile = function (file, content) {
2 var deferred = Q.defer();
3 fs.writeFile(file, content, function (error) {
4 if (error) {
5 deferred.reject(error);
6 }
7 else {
8 console.log(’writeFile complete: ’ + file);
9 deferred.resolve();

10 }

Go-Lab 317601 20 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

11 });
12 return deferred.promise;
13 };

This function takes 2 arguments: the path to the file, and the value to write to.
The lab owner reuses this function for each pin s/he wishes to write to.

Listing 2.4: Turn Off Process
1 //turns OFF process
2 bbbProcess.prototype.turnOff = function () {
3 this.writeFile(bbbPWM.RUN_PATH, ’0’);
4 };

Listing 2.5: Turn On Process
1 //turns ON process
2 bbbProcess.prototype.turnOn = function () {
3 this.writeFile(bbbPWM.RUN_PATH, ’1’);
4 };

The functions turnOff and turnOn in Listings 2.4 and 2.5 already make use of
the writeFile function of Listing 2.3 by writing respectively 0 and 1 to the file
located at bbbPWM.RUN_PATH.

Listing 2.6: Set Process Parameter
1 bbbProcess.prototype.setParam = function (param) {
2 try {
3 bbbPWM.PARAM = param;
4 fs.writeFile(bbbPRocess.PARAM_PATH, bbbPWM.PARAM);
5 }
6 catch (e) {
7 console.log(’setParam error: ’ + e);
8 }
9 };

Just like the turnOff and turnOn functions, the setParam function of Listing 2.7
writes the value param to the file located at bbbProcess.PARAM_PATH.

A last function is an error handling function:

Listing 2.7: Set Process Parameter
1 bbbProcess.errorHandler = function (error) {
2 console.log(’Error: ’ + error.message);
3 };

The Q module of Node.js is used to take care of the case where a function
cannot return a value or throws an exception without blocking. It then returns a

Go-Lab 317601 21 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

promise instead. A promise is an object that represents the return value or the
thrown exception that the function may eventually provide. The promise is then
used as a proxy for a remote object to overcome latency 9. More information can
be found here: http://documentup.com/kriskowal/q/. Using this modality in
in handling response times is good practice for guaranteeing the determinism
of an application.

myRIO Template

Referring to the section 2.3.2 as reference for the application structure, this
tutorial shows how to get started on the myRIO template for the development
and deployment of new labs.

Step 1: Setting Up the Development Environment

All needed software for developing and deploying lab applications with LabVIEW
and myRIO are:

1. LabVIEW10

2. LabVIEW Real-Time Module11 in case the lab implements RT applications

3. LabVIEW myRIO Toolkit12

There are available installations for Mac, Linux, and Windows systems. The in-
stallation process is pretty straight forward with installing guides, where typically
the user is asked to choose installation directories and going to the next steps.

In order to be able to directly work with the myRIO as a target device, it needs
to be connected all the time to the development computer.

Step 2: Cloning the Github Repository on the Development Computer

After making sure that all needed installations are done as per Step 1 , the code
can be cloned from the repository and used.

To clone the repository, execute the command:

git clone https://github.com/go-lab/smart-device.git

The template resides in the directory: smart-device/templates/myRIO

Step 3: Getting Started with the Template

Basically, to adapt this template to the desired application, the VIs of interest
are:

9http://documentup.com/kriskowal/q/
10http://www.ni.com/download/labview-development-system-2014/4735/en/
11http://www.ni.com/download/labview-real-time-module-2014/4832/en/
12http://www.ni.com/download/labview-myrio-toolkit-2014/4854/en/

Go-Lab 317601 22 of 71

http://documentup.com/kriskowal/q/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

1. PID_real.vi: The Core Loop of this VI encloses 5 cases:

a) idle (default): it’s the case where the process is in idle state, and it is
the default case to fall back on. This case is general to labs and need
little or no modification for different lab setups.

b) init: the case which starts hardware initialization and leads to the
‘run’ case. This case as well is general to labs and need little or no
modification for different lab setups.

c) stop: stops the process by sending and stop command to the mod-
ules responsible for stopping the process. This case is general to
labs and need little or no modification for different lab setups.

d) quit: quits the lab server process responsible for running the con-
troller. This case is general to labs and need little or no modification
for different lab setups.

e) run: in this case lies the main dynamics of the lab’s process. The
modules and sub-called VIs for hardware interfacing and operating
the hardware which are specific to a lab’s setup need to be changed.
In the figure below, the needed modules to replace are in the red
rectangle:

Figure 5: PID_real.vi Snapshot

2. HTMLReplies.vi: In this VI, the main case structure dispatches the incom-
ing requests for user clients, metadata, and log files. The code in this VI
for each of the cases is a string constant. The lab owners need to modify
this code according to their requirements. The snapshot below shows how
those string constants are linked to the main case structure:

Go-Lab 317601 23 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 6: HTMLReplies.vi Snapshot

2.4 Examples
2.4.1 Angular Position Control of an Electrical Drive: a LabVIEW Example

on Desktop

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
Desktop
Documentation Wiki: https://github.com/go-lab/smart-device/wiki/
Desktop-wiki
Hardware: Desktop computer (Mac, PC) with DAQ card (NI PCIe 6259)
Software: LabVIEW (2013)
Demo: https://github.com/go-lab/smart-device/wiki/Desktop-wiki

Short Description

The example lab provides an experiment for controlling the angular position of
an electrical drive. The motor’s axle position is sensed and the motor’s voltage is
controlled to reach a reference position. It also uses a USB Video Class (UVC)
webcam.

Services and Functionalities

This lab implements:

• Sensor and actuator access (including video access)

• A combined web and WebSocket server that handles the smart device
services

• A mechanism to link the sensor/actuator to their respective services

• Internal functionalities management (request validation, controller)

• Concurrent user access with race policy for the controller mode (refer to D
4.5 to get more information about concurrency in the scope of Go-Lab)

Go-Lab 317601 24 of 71

https://github.com/go-lab/smart-device/tree/master/Desktop
https://github.com/go-lab/smart-device/tree/master/Desktop
https://github.com/go-lab/smart-device/wiki/Desktop-wiki
https://github.com/go-lab/smart-device/wiki/Desktop-wiki
https://github.com/go-lab/smart-device/wiki/Desktop-wiki

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

The lab allows the manipulation of an electrical drive (RED Servo). The user can
set and read the angular position of the axle. The client application implements
the following:

• Displaying the axle position (sensor value display)

• Displaying the live video feed showing the disk connected to the drive’s
axle

• Setting the axle position (setting actuator value)

• Simple web apps (HTML client applications) for the above sensors/actua-
tors

• Tracking of the desired axle position with an internal controller

Guidelines to Reuse the Example

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Provide new VIs or modify existing ones to read sensor values and add
them to the queue

• Provide new VIs or modify existing ones to write actuator values dequeued
from the queue

• Extend the existing VIs which validate user requests

• Enable/disable the internal controller or adapt it for the respective applica-
tion

• Update and extend the ‘metadata’

2.4.2 Angular Position Control of an Electrical Drive: a LabVIEW Example
on myRIO

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
myRIO
Documentation Wiki: https://github.com/go-lab/smart-device/wiki/
myRIO-wiki
Hardware: NI myRIO1900
Software: LabVIEW (2013)
Demo: https://github.com/go-lab/smart-device/wiki/myRIO-wiki

Short Description

The example lab provides a different implementation of the experiment pre-
sented in 2.4.1. This example is adapted from the latter in 2.4.1 to fix the hard-
ware interfacing differences between the DAQ module and the myRIO board.

Services and Functionalities

This lab implements:

Go-Lab 317601 25 of 71

https://github.com/go-lab/smart-device/tree/master/myRIO
https://github.com/go-lab/smart-device/tree/master/myRIO
https://github.com/go-lab/smart-device/wiki/myRIO-wiki
https://github.com/go-lab/smart-device/wiki/myRIO-wiki
https://github.com/go-lab/smart-device/wiki/myRIO-wiki

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

• Sensor and actuators access

• A combined web and WebSocket server that handles the smart device
services

• A mechanism to link the sensor/actuator to their respective services

• Internal functionalities management (request validation, controller, etc)

• Concurrent users access with race policy for the controller mode (refer to
D 4.5 to get more information about concurrency in the scope of Go-Lab)

The lab allows the manipulation of an electrical drive (RED Servo). The user
can set and read the angular position of the drive axle. The client application
implements the following:

• Displaying the axle speed (sensor value display)

• Setting the axle position (setting actuator value)

• Simple web apps (HTML client applications) for the above sensors/actua-
tors

• Tracking of the desired axle position with an internal controller

Guidelines to Developers

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Provide new VIs or modify existing ones to read sensor values and add
them to the queue

• Provide new VIs or modify existing ones to write actuator values dequeued
from the queue

• Extend the existing VIs which validate user requests

• Enable/disable the internal controller or adapt it for the respective applica-
tion

• Update and extend the ‘metadata’

2.4.3 Savonius VA Wind Turbine Control: a LabVIEW Example on myRIO

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
myRIO/wind-turbine-interplay
Documentation Wiki: https://github.com/go-lab/smart-device/blob/
master/myRIO/wind-turbine-interplay/README.md
Hardware: NI myRIO1900
Software: LabVIEW (2014)
Demo: http://shindig2.epfl.ch/windturbine_myrio.htm

Go-Lab 317601 26 of 71

https://github.com/go-lab/smart-device/tree/master/myRIO/wind-turbine-interplay
https://github.com/go-lab/smart-device/tree/master/myRIO/wind-turbine-interplay
https://github.com/go-lab/smart-device/blob/master/myRIO/wind-turbine-interplay/README.md
https://github.com/go-lab/smart-device/blob/master/myRIO/wind-turbine-interplay/README.md
http://shindig2.epfl.ch/windturbine_myrio.htm

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Short Description

The example lab provides an experiment for controlling the operation of a Verti-
cal Axis (VA) wind turbine, also known as the Savonius13 turbine. A wind source
is turned ON/OFF to operate the turbine and cause electrical current generation.
The voltage is graphed in a real-time interactive display.

Services and Functionalities

This lab implements:

• Sensor and actuators access

• A combined web and WebSocket server that handles the smart device
services

• A mechanism to link the sensor/actuator to their respective services

• Internal functionalities management (request validation, controller, etc)

• Concurrent users access with race policy for the controller mode (refer to
D 4.5 to get more information about concurrency in the scope of Go-Lab

The lab allows the manipulation of a Savonius wind turbine. The user can oper-
ate the wind source to provoke electrical current generation. The client applica-
tion implements the following:

• Displaying the value of generated voltage in an interactive graph (sensor
value display)

• Operating the wind source (setting actuators value)

• Providing live video feed

• Showing if user is controller/observer and remaining time for control/watch
mode

Guidelines to Developers

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Provide new VIs or modify existing ones to read sensor values and add
them to the queue

• Provide new VIs or modify existing ones to write actuator values dequeued
from the queue

• Extend the existing VIs which validate user requests

• Enable/disable the internal controller or adapt it for the respective applica-
tion

• Update and extend the ‘metadata’

13https://en.wikipedia.org/wiki/Savonius_wind_turbine

Go-Lab 317601 27 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

2.4.4 Savonius VA Wind Turbine Control: a Node.js Example on BBB

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
BeagleBoneBlack/vertical-turbine-bbb
Documentation Wiki: https://github.com/go-lab/smart-device/blob/
master/BeagleBoneBlack/vertical-turbine-bbb/README.md
Hardware: BeagleBone Black
Software: Node.js
Demo: http://shindig2.epfl.ch/windturbine_bbb.htm

Short Description

The example lab provides a different implementation of the experiment pre-
sented in 2.4.3. This example uses different technologies, and provides extra
features in the user client: saving experimental data in text files, real-time lab
status update, scrolling back to old data, and different user interface.

Services and Functionalities

This lab implements:

• Sensor and actuators access

• A WebSocket server that handles the smart device services

• A mechanism to link the sensor/actuator to their respective services

• A metadata service as per the Smart Device specifications in D4.7 for lab
identification and interfacing

The lab allows the manipulation of a Savonius wind turbine. The user can oper-
ate the wind source to provoke electrical current generation. The client applica-
tion implements the following:

• Displaying the value of generated voltage in an interactive graph (sensor
value display)

• Operating the wind source (setting actuators value)

• Providing live video feed

• Providing real-time lab status update

• Saving experimental data

• Scrolling back to old data

Guidelines to Developers

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Install the necessary node modules using the Node Packaged Modules14.

14https://www.npmjs.org/

Go-Lab 317601 28 of 71

https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/vertical-turbine-bbb
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/vertical-turbine-bbb
https://github.com/go-lab/smart-device/blob/master/BeagleBoneBlack/vertical-turbine-bbb/README.md
https://github.com/go-lab/smart-device/blob/master/BeagleBoneBlack/vertical-turbine-bbb/README.md
http://shindig2.epfl.ch/windturbine_bbb.htm

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Lab owners can find node modules necessary for their specific applica-
tions on the mentioned website.

• Modify the package.json file to include the newly installed modules or
delete the unnecessary ones

• Modify the README.md file to better describe the specific application.

• Modify the bbbADC.js file to correctly interface the specific instrumentation
connected to the BeagleBone Black. Lab owners can use the JavaScript
libraries on this Beagle website.15

• Modify the websocket-server.js file to adequately service the user client.

2.4.5 Angular Position Control of a Mini-Servo Motor: a Node.js Example
on BBB

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
BeagleBoneBlack/servo-beaglebone-black
Documentation Wiki: https://github.com/go-lab/smart-device/tree/
master/BeagleBoneBlack/servo-beaglebone-black#servo-beaglebone
-black
Hardware: BeagleBone Black
Software: Node.js application
Demo: https://github.com/go-lab/smart-device/wiki/BeagleBone-wiki

Short Description

The example lab provides an experiment for controlling the angular position of
a mini-servo motor with PWM (Pulse Width Modulation). The user is provided
with a slider to increase/decrease the duty cycle of the period, and hence con-
trolling the angular position of the motor’s shaft. Sensor and actuator values are
displayed, and live video feed is provided, with real-time system status updates.

Services and Functionalities

This lab implements:

• Sensor and actuators access

• A WebSocket server that handles the Smart Device services

• A mechanism to link the sensor/actuator to their respective services

• A metadata service as per the Smart Device specifications in D4.7 for lab
identification and interfacing

The lab allows the manipulation of a mini-servo motor. The user can set and
read the angular position of the motor’s shaft. The client application implements
the following:

• Displaying the duty cycle corresponding to the angular position (sensor
15http://beagleboard.org/Support/BoneScript

Go-Lab 317601 29 of 71

https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black#servo-beaglebone-black
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black#servo-beaglebone-black
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black#servo-beaglebone-black
https://github.com/go-lab/smart-device/wiki/BeagleBone-wiki

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

value display)

• Setting the duty cycle (setting actuator value)

Guidelines to Developers

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Install the necessary node modules using the Node Packaged Modules16.
Lab owners can find node modules necessary for their specific applica-
tions on the mentioned website.

• Modify the package.json file to include the newly installed modules or
delete the unnecessary ones

• Modify the README.md file to better describe the specific application.

• Modify the bbb-pwm.js file to correctly interface the specific instrumen-
tation connected to the BeagleBone Black. Lab owners can use the
JavaScript libraries on this Beagle website.17

• Modify the websocket-server.js file to adequately service the user client.

2.4.6 Robot Arm: a Node.js Example on Raspberry Pi

General Information

Source code: https://github.com/go-lab/smart-device/tree/master/
RaspberryPi/robotic_arm-raspberry-pi
Documentation Wiki: https://github.com/go-lab/smart-device/wiki/
Robotic-Arm-Laboratory
Hardware: Raspberry Pi B, and Arduino UNO
Software: Raspbian O.S., Node.js, Socket.io, serialport, Apache
Demo: http://graasp.eu/applications/54d8ad0f17cf888ac8d6af04

Short Description

The example lab provides an experiment for controlling a robotic arm which
simulates a set of the human arm movements: moving right/left backwards/on-
wards, grabbing an object, etc.

Services and Functionalities

This lab implements:

• A live video feed

• Setting the control for each of the robotic arm’s motors for the clamp, wrist,
elbow, shoulder and base (setting actuator value)

16https://www.npmjs.org/
17http://beagleboard.org/Support/BoneScript

Go-Lab 317601 30 of 71

https://github.com/go-lab/smart-device/tree/master/RaspberryPi/robotic_arm-raspberry-pi
https://github.com/go-lab/smart-device/tree/master/RaspberryPi/robotic_arm-raspberry-pi
https://github.com/go-lab/smart-device/wiki/Robotic-Arm-Laboratory
https://github.com/go-lab/smart-device/wiki/Robotic-Arm-Laboratory
http://graasp.eu/applications/54d8ad0f17cf888ac8d6af04

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Guidelines to Developers

To adapt the example for different physical instrumentation, the lab owner needs
to:

• Modify the use of the serialport library in case of switching from USB to
another protocol for interfacing the Raspberry Pi and Arduino boards

• Modify the HTML files for the corresponding UI requirements

• The hardware interfacing modules for different instrumentation

Go-Lab 317601 31 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

3 Releases of Cloud Services
As defined in D4.5, in the scope of this document, Cloud Services are a set of
services designed to extend the functionalities of the Go-Lab infrastructure to
lab owners of legacy lab systems, by providing them with means to plug their
systems into the Go-Lab ecosystem. Legacy laboratories are all online lab plat-
forms not designed in compliance with the Smart Device specifications as de-
fined in D4.5. This chapter is an updated version of chapter 3 of D4.3 (Releases
of the Lab Owner and Cloud Services - Initial). In the following sections details
about the Smart Gateway architecture and implementation are presented, in
addition to the software releases.

3.1 Cloud Services Final Release Compared to the Initial Re-
lease

As previously mentioned, this deliverable is an updated version of D4.3 (Re-
leases of Lab Owner and Cloud Services - Initial). This section describes the
timeline of the cloud services since the beginning of the project, with a focus
on the developments made since the release of D4.3. The main features imple-
mented since then are:

• Internationalisation support: This feature is described in detail in sec-
tion 3.4.4. It provides legacy lab owners with the possibility to get their
labs translated by the Go-Lab community using the App Composer. Trans-
lations have to comply with one of the supported formats and it is an addi-
tional benefit for lab owners that sharing labs with Go-Lab.

• Additional HTTP plug-in templates: New templates were developed to
be offered as as tool for lab owners wishing to share labs with Go-Lab.
These templates were developed for PHP and LabVIEW. More details
about the HTTP plug-ins is available in section 3.4.3.

• Integration with Remlabnet RLMS: A new remote laboratory manage-
ment system (Remlabnet) was integrated into the Go-Lab ecosystem with
an HTTP plug-in. More details follow in section 3.5.6

• Implementation of a protocol translator: A protocol translator that
translates legacy requests to smart device compliant requests was im-
plemented as a proof of concept for ISA and WebLab Deusto RLMSs. A
detailed description can be found in section 3.4.6.

3.2 Introduction
In D4.5, the requirements and the design of the Smart Gateway are presented.
The Smart Gateway is presented as an approach to integrate legacy laborato-
ries. The methodology is composed of:

• gateway4labs: a management tool for integrating the reservation process
of the legacy laboratories, which might require wrapping authentication,
authorization, scheduling and providing additional services (such as meta-
data or booking on the Go-Lab level).

Go-Lab 317601 32 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

• Action Logger: an optional mechanism to support the logging of user ac-
tions with the laboratory.

• Protocol translator: an optional component, to be implemented by the lab
owner for translating the existing communication mechanisms to Smart
Device compliant services.

As already discussed in D4.3, there is a trade-off between the development
effort put on components and the features provided.

3.3 The Smart Gateway Architecture
The main purpose of the Smart Gateway is to allow the integration of legacy
labs in the Go-Lab Platform, by making them fully or partially compliant with
the Smart Device specifications. The level of compatibility depends on the
implementation strategy adopted (see D4.5 for a description of the different
integration levels). Figure 7 below shows the Smart Gateway architecture in
detail.

Figure 7: Smart Gateway Architecture

The gateway4labs is the core of the architecture. It provides a core component
(a web application called LabManager), and different approaches for including
external resources. It provides metadata services and exports the legacy
lab clients as OpenSocial gadgets that can be added to an Inquiry Learning
Space (ILS). The Smart Gateway supports different legacy lab systems via

Go-Lab 317601 33 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

different plug-ins. In this architecture, the plug-ins are responsible for bridging
the communication between the LabManager and the legacy lab systems. The
functionalities that a plug-in should implement depend on the level of inte-
gration desired (see D4.1 for details). For online labs managed by a Remote
Laboratory Management System (RLMS), (an RLMS is a system that provides
a management layer for multiple remote laboratories, optionally including
authentication, authorization, scheduling or user tracking), a single plug-in is
necessary to integrate all labs managed by the same RLMS. Plug-ins for some
well-known RLMSs like WebLab-Deusto and iLabs Shared Architecture are
provided. The detailed implementation of each one is discussed in the following
sections.

Lab owners can choose from four different options to plug their systems into the
Smart Gateway that will affect the development of plug-ins and the supported
features. Therefore there is a trade-off between the supported features and the
implementation efforts. These options were described in detail in D4.1, and
briefly recapitulated below:

1. iFrame in Smart Gateway: this can be implemented if authentication is
not required by the legacy lab system. This option consists of providing
the legacy client as an OpenSocial application. Hence technically, it is
an enhanced iFrame. Additionally, by including a lab, the Smart Gateway
administrator has the possibility to author some metadata content for the
lab that the Smart Gateway will use to provide the metadata services (part
of the Smart Device specifications).

2. A simple version of the plug-in: if the legacy lab requires authentication the
plug-in can be implemented in such a way that it will log into the legacy
lab system with a fixed user account. In this approach the legacy lab ad-
ministrator will not be able to uniquely identify the user, so some features
like the possibility of tracking used actions in the context of an experiment
(lab level) would be unavailable. Of course the logging of user actions at
ILS level is always available.

3. A full version of the plug-in: in this case all reservation features provided
by the legacy system are bridged by the plug-in. Users can be uniquely
identified. Parts of these features also depend on implementations at the
legacy lab side. It should return a URL that will be loaded by the client.

4. A full version of the plug-in plus a protocol translator: Additionally to im-
plementing a full version of the plug-in this option requires all messages
exchanged between client and server to be translated according to the
Smart Device specification. It requires potentially a large implementation
effort and an individual solution for each legacy system.

3.4 The Smart Gateway Software
The Smart Gateway (http://gateway.golabz.eu/) consists of gateway4labs
(which manages the authentication, scheduling mechanisms), the protocol

Go-Lab 317601 34 of 71

http://gateway.golabz.eu/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

translator and a lightweight implementation of the protocol translator, that sup-
ports the logging of user actions in the context of a lab reservation. More back-
ground about gateway4labs is available in chapter 8. The following diagram
describes the overview of the gateway4labs software components.

Figure 8: Gateway4Labs overall architecture

One can identify two main layers on Figure 8: the left side is the client side
and the right side is the lab side. On the left side, different learning tools can
be integrated through the support of existing standards by the core component
of gateway4labs, which is called Labmanager. On the right side, different
remote laboratories can be integrated through a set of plug-ins. In the middle,
the Labmanager performs all the management operations and conversions
between the different actors of the left side and the right side.

In this way, we can split the functionality of the gateway4labs in three parts:

1. The support for standards, and OpenSocial in particular since it is the one

Go-Lab 317601 35 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

being supported by the ILS platform. This is detailed in section 3.4.1.

2. The support for remote laboratories, through the plug-in mechanism, de-
tailed in Section 3.4.3.

3. The management side of the core component (Labmanager).

3.4.1 Support for Standards

In gateway4labs, the core component (labmanager) natively supports three dif-
ferent systems:

1. OpenSocial: described in this section.

2. IMS LTI: Learning Tools Interoperability, it is a standard supported by the
main LMS environments, which supports integrating external tools na-
tively. Since the labmanager implements this standard, every laboratory
supported can be automatically integrated in any LMS, which supports it.

3. HTTP-based plug-ins: A custom HTTP interface is provided, so external
tools not supporting IMS LTI or OpenSocial can consume this interface
to connect to gateway4labs. This includes plug-ins in systems such as
Joomla1 or an LMS not supporting LTI, such as dotLRN2.

Since the interface between gateway4labs and the ILS platform is based on
OpenSocial, this section is focused on this implementation.

Context Information Management

When a user (teacher or student) is using the ILS platform, there is certain
context information which could be useful for gateway4labs, such as: who is the
user (if identified), where is the user accessing from (ILS) or what language is
selected by the teacher for this ILS (e.g., French, German, Spanish, etc.). This
contextual information is useful to provide feedback to the laboratory about who
is using the laboratory. The context information is particularly important when
the labmanager requests a reservation on the legacy lab system.

Public Laboratories

Once the administrator registers a laboratory, by default gateway4labs does not
make it publicly available for unregistered users. This is the default behaviour
in remote laboratory management systems. However, the administrator can
configure that a particular laboratory is openly available for everyone.

This way, in the OpenSocial version it is possible to provide the laboratory to
certain ILSs, or it can be available for every space, as it will be the common
case.

1https://github.com/gateway4labs/cms_joomla
2https://github.com/gateway4labs/lms4labs/tree/master/lms/dotLRN

Go-Lab 317601 36 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

3.4.2 Existing Features

Additionally, gateway4labs supports other optional features, such as enabling
the laboratory to restart the lab app whenever it is required. In WebLab-Deusto,
for example, whenever the user performs a reservation, the user will be able to
use a single reservation. Whenever the reservation is over (and the student is
not using the laboratory anymore), a message is submitted to the labmanager
to restart the lab app and be able to perform a new reservation if desired.

So as to support this optional mechanism, gateway4labs provides a URL that
will force a reload of all the lab apps of the same laboratory. This URL is passed
to the laboratory plug-in, so it can optionally load this URL when finished. Cer-
tain laboratories (like the iLab radioactivity laboratory, where the user can per-
form more operations once using it) do not require these features.

3.4.3 Support for remote laboratories: The plug-in system

The core functionality of gateway4labs is to provide an API to support a wide
range of laboratories. This API aims to be simple so as to encourage laboratory
owners to develop their plug-ins, by avoiding strict requirements other than a link
to the final laboratory crossing the reservation processes of the final laboratory.
This API is described in detail in D4.5.

Implementations of the plug-in system for different legacy platforms

The base of the plug-in system is that the laboratory must support some mech-
anism to provide a link that identifies the current reservation. There are different
ways to approach this:

• Using federation protocols: in the case of WebLab-Deusto (http://
weblab.deusto.es/), a federation mechanism is used to access a
WebLab-Deusto server as if it was another WebLab-Deusto server re-
questing a reservation. WebLab-Deusto returns a URL which includes
a reservation identifier, and the labmanager can use this link to redirect
the user to that location. From that point, all the communications do not
cross the gateway4labs infrastructure.

• Creating users dynamically: in the case of the iLab Shared Architecture
(http://icampus.mit.edu/projects/ilabs/), the plug-in creates a new
user (if it was not previously made) and grants this user permission to
use that laboratory (if he did not have that permission), and finally the
user is redirected to the final system. There, the user can start using the
laboratory he has access to.

• Using encryption to sign messages: in the case of the UNR (http://
labremf4a.fceia.unr.edu.ar/about/ - see section 3.5.5), a secret key
is stored in the plug-in, and a message that includes the username, the
current timestamp, and the laboratory is signed. The message and the
signature are returned to the labmanager in the form of a URL. When the
user is redirected to that URL, the laboratory at UNR verifies whether this

Go-Lab 317601 37 of 71

http://weblab.deusto.es/
http://weblab.deusto.es/
http://icampus.mit.edu/projects/ilabs/
http://labremf4a.fceia.unr.edu.ar/about/
http://labremf4a.fceia.unr.edu.ar/about/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

message is valid and if it is, it enables the user to access the laboratory
until the timestamp expires.

• Simple redirection: in the case of PhET (https://phet.colorado.edu/ -
see section 3.5.3), the plug-in just generates the public link to the PhET
simulation. This way, the user is redirected to the public link directly.

• Federated search: in the case of ViSH (http://vishub.org/ - see section
3.5.4), the plug-in must forward the query provided by the user to the ViSH
repository, and then generate a link.

Other mechanisms could be employed, since this depends completely on
how the final laboratory enables users to access. Additionally, the plug-
in must provide a way to define the initial configuration. In the case of
WebLab-Deusto or iLab, this includes the particular server and credentials
of this server. In the case of UNR, the secret key must be configured.

The Plug-in: Python version

Since gateway4labs is developed in Python, the basic plug-in structure is based
on Python. The developer only needs to develop a module or a package called
g4l_rlms_{{ name }}, and then in the configuration file of the Labmanager, the
developer must add the name of the plug-in to the RLMS variable (which is a
list, as shown below). For example, if we create a plug-in called “foo”, we just
need to create a file called g4l_rlms_foo.py (or a package called g4l_rlms_foo,
with different files inside), and in the config.py add:

RLMS = [‘weblabdeusto’,‘ilabs’,‘foo’]

Then, it can provide a function called get_module(version), so it could support
different versions through having different modules. For example, iLab could
have two independent modules that fulfill the Python API in the same plug-in,
namely “g4l_rlms_ilab.py”, “ilab_3_1.py” and “ilab_3_5.py”, and in the first one
it could provide the get_module(version) function. Whenever version was 3.1,
it could rely on one module, and whenever the version was 3.5, it could rely on
the other one.

The module used must provide an instance FORM_CREATOR, which creates
the required forms. In the case of the Python version, the configuration is man-
aged by subclassing a set of classes based on WTForms3. In these classes, the
developer can select how to convert these values into a single JSON document.
This JSON document will be stored in the database, and it will be used with all
the instances of the plug-in (e.g., different instances of WebLab-Deusto). This
process is detailed in Figure 9.

3http://wtforms.readthedocs.org/

Go-Lab 317601 38 of 71

https://phet.colorado.edu/
http://vishub.org/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 9: Configuration process in Python plug-ins

Finally, the module must create a class called RLMS. This class will be instanti-
ated with the JSON configuration, and it is expected to use that configuration to
perform each of the tasks mentioned in the previous subsection.

The following are examples of Python plug-ins:

• WebLab-Deusto plug-in.

– Repository: https://github.com/gateway4labs/rlms
_weblabdeusto

– Original: http://weblab.deusto.es

– Notes: three files are used in a single package
g4l_rlms_weblabdeusto. Two of them (weblabdeusto_client.py
and weblabdeusto_data.py) are taken from WebLab-Deusto directly,

Go-Lab 317601 39 of 71

https://github.com/gateway4labs/rlms_weblabdeusto
https://github.com/gateway4labs/rlms_weblabdeusto
http://weblab.deusto.es

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

while the third one (__init__.py) specifies the rest.

• iLab Shared Architecture plug-in.

– Repository: https://github.com/gateway4labs/rlms_ilabs

– Original: http://ilab.mit.edu/wiki

– Notes: there is a single g4l_rlms_ilabs.py file which matches the
specification explained above. There is also a ASPX file to be op-
tionally added to the iLab server.

• UNR-FCEIA plug-in.

– Repository: https://github.com/gateway4labs/rlms_unr

– Original: http://labremf4a.fceia.unr.edu.ar/

– Notes: there is a single g4l_rlms_unr.py file. In this case, there is
no communication between the plug-in and the final server, since it’s
based on a cryptographic solution where the plug-in generates and
signs tokens that the user will forward to the final server.

• PhET plug-in.

– Repository: https://github.com/gateway4labs/rlms_phet

– Original: http://phet.colorado.edu

– Notes: this represents a set of simulations. There is no reservation
process, so the reserve method is focused on generating links to the
simulation.

• ViSH plug-in.

– Repository: https://github.com/gateway4labs/rlms_vish

– Original: http://vishub.org/

– Notes: this represents a set of simulations. There is no reservation
process, so the reserve method is focused on generating links to the
simulation.

• QuVis plug-in

– Repository: https://github.com/gateway4labs/rlms_quvis

– Original: http://www.st-andrews.ac.uk/physics/quvis/

– Notes: this represents a set of simulations. There is no reservation
process, so the reserve method is focused on generating links to the
simulation.

• Concord plug-in.

– Repository: https://github.com/gateway4labs/rlms_concord

– Original: http://concord.org/

– Notes: this represents a set of simulations. There is no reservation

Go-Lab 317601 40 of 71

https://github.com/gateway4labs/rlms_ilabs
http://ilab.mit.edu/wiki
https://github.com/gateway4labs/rlms_unr
http://labremf4a.fceia.unr.edu.ar/
https://github.com/gateway4labs/rlms_phet
http://phet.colorado.edu
https://github.com/gateway4labs/rlms_vish
http://vishub.org/
https://github.com/gateway4labs/rlms_quvis
http://www.st-andrews.ac.uk/physics/quvis/
https://github.com/gateway4labs/rlms_concord
http://concord.org/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

process, so the reserve method is focused on generating links to the
simulation.

The Plug-in: HTTP version

The HTTP version relies on a RESTful interface that can be implemented in
any language to support the development of plug-ins in other technologies. It
also makes it possible to decouple the Labmanager maintenance and the plug-
in maintenance, since the plug-in could be deployed in another institution, as
discussed in D4.1. Furthermore, a Python server supporting this RESTful inter-
face will be implemented to make it possible to distribute the existing plug-ins in
other institutions if desired. In the approach selected (and explained in D4.1),
the plug-in stores information of the final system such as credentials or URLs.
To configure the plug-in and add this information, the Smart Gateway adminis-
trator will be redirected to a website provided by the plug-in. This workflow is
described in Figure 10.

Figure 10: HTTP plug-in configuration stored in the plug-in side

This approach provides a considerably wider flexibility to the HTTP plug-in de-

Go-Lab 317601 41 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

veloper, since he can provide and upgrade in the future the configuration vari-
ables without interacting with the Labmanager. The panel can be very simple or
very sophisticated, depending on the complexity of the remote laboratory. The
model becomes much simpler, since it does not need to agree the available
constraints. Additionally, the configuration secrets are kept on the HTTP plug-in
side. On the other hand, this requires the HTTP plug-in to be publicly available
to the Internet, while previously it could be just available in the Labmanager. It
also requires the HTTP plug-in to be responsible of more roles, such as storing
the configuration information.

HTTP plug-in implementations since D4.3

Different implementations of the HTTP plug-in were developed that can be used
by lab owners as templates for the integration of legacy lab with the HTTP inter-
face. These templates are available for different platforms:

• Python (Flask)

• Java

• PHP (Slim)

• .NET (ASP.NET with C)

• LabVIEW

A list of examples is provided in the following repository:

• Repository: https://github.com/gateway4labs/labmanager/tree/master/
examples/http_plugins/

By the time deliverable D4.3 (M21) was released the available implementations
were:

• Repository: https://github.com/gateway4labs/labmanager/tree/b2dfb7
a395d1bd7d2d1ac1bd0c426d0309197ea6/examples/http_plugins

3.4.4 New features

In this deliverable (D4.7), new features were added, including support for in-
ternationalisation, automatic resizing of the application ((as requested through
participatory design by WP1 and WP3), a caching mechanism and a repeating
task scheduler, explained below:

Internationalisation support

Go-Lab resources must support a wide range of languages to reach its audi-
ence. Go-Lab applications rely on the OpenSocial standard, which provides
an internationalisation mechanism. In WP5, the App Composer uses this
mechanism to automatically translate applications and laboratories developed
in OpenSocial.

However, the Smart Gateway integrates external laboratories, developed in

Go-Lab 317601 42 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

other technologies. So it needs to support a variety of internationalisation for-
mats. To simplify this process, the Smart Gateway provides an additional op-
tional method called getTranslations, which should be implemented by the lab
owner. It returns the translations in a common JSON format, such as the one
available in 3.1. On it, the lab owner indicates:

• Contact e-mail addresses: whenever somebody provides a translation of
the laboratory, these e-mail addresses will be contacted saying who trans-
lated what.

• Translations in each language. Identified by a key message, they contain a
value (the text in the specified language) and optionally a namespace. The
namespace identifies unique phrases through different laboratories. For
example, laboratories developed by the same author or using the same
system will typically have common code with common phrases. Identifying
them as shared among independent laboratories enable the translation
engines to use existing translations.

By obtaining these translations, the Smart Gateway later exports them as
OpenSocial translations. This way, the App Composer (WP5) can later take
those translations, and contact the authors providing the translations in a wide
range of formats for developers (e.g., in jQuery i18n, .properties file, a generic
JSON file, OpenSocial).

Listing 3.1: Internationalisation format used in the Smart Gateway
1 {
2 "mails": [
3 "labowner1@university.edu",
4 "labowner2@university.edu",
5],
6 "translations": {
7 "en": {
8 "experimenthostedby": {
9 "namespace": "http://labsystem.university.edu/#",

10 "value": "Experiment hosted by"
11 },
12 "sensorsHelpTitle": {
13 "namespace":

"http://labsystem.university.edu/experiment/#",
14 "value": "Sensor information"
15 },
16 },
17 "es": {
18 "experimenthostedby": {
19 "namespace": "http://labsystem.university.edu/#",
20 "value": "Experimento hospedado por"
21 },
22 "sensorsHelpTitle": {
23 "namespace":

Go-Lab 317601 43 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

"http://labsystem.university.edu/experiment/#",
24 "value": "Informaci\u00f3n del sensor"
25 },
26 },
27 }
28 }

Caching mechanisms

The Smart Gateway provides OpenSocial representations of all the labs it man-
ages. The OpenSocial xml file must be obtained quickly, and it must contain
the translation messages. Additionally, many tasks (such as retrieving the list of
labs in an external repository, or obtaining the URL from an external service),
can be cached to provide a faster feedback to users. To this end, the Smart
Gateway Python plug-in API provides a caching mechanism which stores in the
local database whatever is requested, using a key/value basis. If necessary,
in the future it could be implemented with other faster database or memory
database without affecting existing plug-ins.

In the case of PhET, QuVis and Concord, the Smart Gateway caches all the labs
to the final laboratories. This way, once cached, it will be stored and the original
servers will not be contacted. This cache is stored for 24 hours, and it can be
forced to be removed using the web browser tools for forcing a cache reload. In
the case of iLab, WebLab-Deusto and HTTP plug-ins (such as Remlabnet), it
is used for the list of labs (but it is maintained for only one hour) as well as for
the translations (so the method is called only from time to time). In the case of
HTTP plug-ins, it is also used for common methods such as "getCapabilities()"
or "getVersion()". Further fine-grained cache mechanisms in the HTTP plug-ins
would require the plug-in developer to manage it inside the plug-in.

Additionally, the Smart Gateway provides a special HTTP client which stores
a common cache for all the plug-ins. If a URL is retrieved with HTTP caching
mechanisms (e.g., standard etag / Last-Modified headers), it is stored and in the
future it will act accordingly, obtaining the information from the shared cache.

Repeating task scheduler

Another feature provided by the Smart Gateway is a scheduler so the plug-in
can explicitly provide tasks to be run every given amount of time. For example,
the Smart Gateway lets the plug-in developers to provide functions that populate
the whole cache so as to keep always the data in the cache and therefore avoid
that somebody ever needs to wait for the data. This way, it is guaranteed that
while the plug-in code is called and is kept simple, if properly configured it will
never take time populating a cache when a user is requesting it. So in the case
of the plug-ins developed, it typically forces in background a cache load every
few minutes before it expires.

Go-Lab 317601 44 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Automatic height resize

The Smart Gateway laboratories typically embeds external resources located
in other domains. A common problem with this is that, while the ILS manages
the app width using a responsive design, there is no way to know the height
of this resource in real time due to security constraints. For this reason, two
complementary approaches have been selected:

• Enable teachers taking the laboratory to select the height of the lab app
manually with a slider, as shown in figure 11.

• Enable plug-in developers to embed an external JavaScript library called
iframe-resizer4 which reports the container (Smart Gateway) what is the
height of the current frame. This approach is used in WebLab-Deusto and
iLab.

Figure 11: Slider to select the height of the labs integrated in the Smart
Gateway

3.4.5 Demo and Software Repository

The production system is located in the following URL, and it is regularly used
in Go-Lab:

• http://gateway.golabz.eu

If you click on "See public labs", you may explore the active laboratories avail-
able in the Smart Gateway.

However, the administrative actions are not available to the general public. So
as to see these options, a sandboxed environment has been created for this

4https://github.com/davidjbradshaw/iframe-resizer

Go-Lab 317601 45 of 71

http://gateway.golabz.eu

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

deliverable:

• URL: http://weblab.deusto.es/golab/labmanager_d47/

• Username: admin

• Password: password4reviewers

Additionally, all the source code of the labmanager is in the following GitHub
repository and documented in the following readthedocs site:

• http://github.com/gateway4labs/labmanager/

• http://gateway4labs.readthedocs.org/

3.4.6 A prototype of the protocol translator

The protocol translator is an additional and optional component of the Smart
Gateway that mainly translates legacy communication (legacy lab specific) and
expose them as services compliant with the Smart Device specifications (us-
ing WebSockets & JSON) The concept of the protocol translator is explained
in detail in deliverable D4.5. Its implementation is lab specific and will usu-
ally serve one single legacy lab since the messages exchanged by these sys-
tems are often different and domain-specific. In the scope of this deliverable,
two prototypes of the protocol translator were developed as a proof of con-
cept. The developed prototypes are for the Radioactivity laboratory (http://
www.golabz.eu/lab/radioactivity-lab and the Archimedes’ Principle labora-
tory (http://www.golabz.eu/lab/archimedes-principle). Both labs are avail-
able in the Go-Lab Repository.

The protocol translator for the Radioactivity Laboratory (iLab Shared Ar-
chitecture)

The Radioactivity laboratory is owned by the University of Queensland, Aus-
tralia. This lab is a batched laboratory (asynchronous), which means that the
user does not control the lab equipment in real time. This characteristics of this
lab poses several challenges when implementing a mechanism that translates
all legacy messages to smart device call (see D4.5 for more details on the smart
device specification). Furthermore, the radioactivity lab was developed for the
iLab Shared Architecture (ISA). The translation process, in the particular case
of ISA means translating smart device compliant calls to Web Service SOAP
calls. The protocol translator has to abstract the whole process involved in a
batched experiment execution. Figure 12 depicts this process.

Go-Lab 317601 46 of 71

http://weblab.deusto.es/golab/labmanager_d47/
http://github.com/gateway4labs/labmanager/
http://gateway4labs.readthedocs.org/
http://www.golabz.eu/lab/radioactivity-lab
http://www.golabz.eu/lab/radioactivity-lab
(http://www.golabz.eu/lab/archimedes-principle

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 12: Sequence diagram protocol translator ISA

Repository:
https://github.com/gateway4labs/protocol_translator
_radioactivityLab

For this proof of concept, the following smart device methods were imple-
mented:

• getSensorMetadata()

• getActuatorMetadata()

Go-Lab 317601 47 of 71

https://github.com/gateway4labs/protocol_translator_radioactivityLab
https://github.com/gateway4labs/protocol_translator_radioactivityLab

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

• getSensorData()

• setActuatorData()

The methods getSensorMetadata() and getActuatorMetadata() do return the
metadata of the smart device, which is stored in the protocol translator and
contains basically static data. Therefore it does not need to contact the legacy
lab to retrieve it. The smart device message schema and protocol are described
in detail in deliverable D4.5. Both methods previously mentioned do not require
an authentication token. The methods getSensorData() and setActuatorData()
do require an authentication token to be provided along with the request and
this token has to be retrieve by a separate process. Assuming the token was
retrieved, the user can call the services and interact with the legacy lab. In the
particular case of the iLab Shared Architecture batched labs, every request to
setActuatorData() will cause the protocol translator to call a submit() method on
the iLab Service Broker and an experiment execution will begin. This method
returns an experiment ID to the user. By calling the getSensorData() method
(with requires the user to provide an experiment ID), the protocol translator will
query the Service Broker for the status of the experiment. If this is completed
the results will be returned to the user according to the smart device specifi-
cations. If the experiment is not complete the current status will be returned.
In this way, this legacy lab behaves as close as possible to a native smart device.

This prototype of the protocol translator was developed to serve as a proof of
concept. It is however not realistic to assume that it will be developed to trans-
late request to all legacy labs in the Go-Lab ecosystem, since this requires an
specific implementation for each legacy system. Furthermore, in this prototype
only the protocol translator was implemented. In order to be able to use this lab
a client app has to be re-written. The protocol translator is an optional compo-
nent, and we do recommend other more effective integration methods to share
legacy labs withing Go-Lab, like implementing a gateway4labs plug-in.

The protocol translator for the Archimedes laboratory (WebLab-Deusto)

The archimedes laboratory is developed by the University of Deusto, using
WebLab-Deusto. WebLab-Deusto uses a set of HTTP calls for pushing informa-
tion and retrieving results during the session. For its conversion to the Protocol
Translator, none of the client code can be reused, and an example HTML was
created to replace it which displays the results from the laboratory, but does
not push any information. A WebLab-Deusto communications wrapper was cre-
ated, so once a reservation had been done, the reservation identifier could be
used to start the communications using the Smart Device protocol to first map
the existing communications as sensors and then convert each communication
into a native WebLab-Deusto request.

Repository:
https://github.com/gateway4labs/protocol_translator_weblabdeusto

For this proof of concept, the following smart device methods were imple-

Go-Lab 317601 48 of 71

https://github.com/gateway4labs/protocol_translator_weblabdeusto

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

mented:

• getSensorMetadata()

• getSensorData()

As in the previous scenario, the prototype was developed as a proof of con-
cept, and a full implementation even for a single laboratory (like the Archimedes
laboratory) would have required a different magnitude of effort than the orig-
inal development. For this reason, it was discontinued and its deployment in
production is using a gateway4labs plug-in.

3.4.7 Summary of the benefits for integrated remote laboratories

The focus of gateway4labs is attracting laboratory owners to the Go-Lab ecosys-
tem, so they can share their labs in Go-Lab. To achieve this goal, the following
incentives are provided:

1. Easy integration: A flexible, pragmatic approach to integrate existing re-
mote laboratories into gateway4labs through the plug-in mechanism and
the management panels. The amount of code required is not relevant,
since it only acts as an initial bridge, and two interfaces (native Python
API and HTTP API) are provided. Multiple deployment schemas are sup-
ported, as specified in the Architecture section of D4.5.

2. Additional Go-Lab incentives: Go-Lab will provide the laboratory own-
ers with several benefits. The most important one is the visibility of the
laboratories. Thousands of students and teachers will be able to easily
find the federated laboratories. Other benefits include the support of Go-
Lab Add-on services, such as the booking system. Certain remote labo-
ratories might have a queue for managing students, which does not scale
well. However, if the laboratory is integrated in gateway4labs and gate-
way4labs supports the booking mechanism of the Go-Lab portal, then the
laboratory will be only available to students of groups which have booked
the laboratory, reducing the amount of concurrent students.

3. Keep control of the laboratories: The Go-Lab project requires that the
laboratories are open and no registration is needed, and the Smart Gate-
way will encourage developers to keep their laboratories open. However,
gateway4labs provides mechanisms to enable that a remote laboratory
is only available to a particular ILS. This would require those interested
schools to register in the gateway4labs server used by that laboratory
owner, and then the laboratory owner could provide the laboratory only
to that school. The visibility of the laboratory would be consequently de-
creased. However, guaranteeing this type of control to the laboratory
owner, it is possible that certain laboratory owners could have fewer re-
jections to participate in the integration, and once integrated; they can
consider if they finally open their laboratories.

4. Use a federated approach: gateway4labs plug-ins support federation
mechanisms if these are provided by the integrated systems. For ex-

Go-Lab 317601 49 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

ample, WebLab-Deusto provides a federation protocol so one WebLab-
Deusto system with 4 laboratories can share a subset of them to other
WebLab-Deusto system. The plug-in of this WebLab-Deusto benefits of
this feature so it translates requests from gateway4labs (which come from
the ILS platform) as if it was an external WebLab-Deusto system request-
ing a laboratory for a local user. This federated approach enables remote
laboratories to be also provided through their original portals or be inte-
grated in other tools, while increasing their visibility by sharing them with
Go-Lab.

5. Incentives outside Go-Lab: gateway4labs does not only support
OpenSocial, but also other specifications, such as IMS LTI, and a HTTP
interface to be deployed in custom systems (such as CMS as Joomla). If
a laboratory owner aims to integrate a remote laboratory in a Moodle LMS
or a Joomla CMS, then gateway4labs is a tool that makes this process
easy, so the laboratory owner only needs to develop the plug-in for the
remote laboratory. Once this plug-in is developed, intended for supporting
an LMS or a CMS, this remote laboratory is, from a technical perspective,
available and compatible for the Go-Lab context.

3.5 Smart Gateway Plug-in Releases
This section describes the Smart Gateway plug-ins released for well-
known remote lab management systems and other legacy online lab sys-
tems. For any legacy remote lab managed by one of these RLMS the
Smart Gateway will offer out of the box support for its integration in the
Go-Lab infrastructure. Depending on the RLMS and the integration level
desired (see D4.5 for details on the different integration levels) the support
for the plug-in might require some implementation also at the RLMS or
lab owner’s side. In cases like this, not all versions of the RLMS will be
supported.

3.5.1 WebLab-Deusto

WebLab-Deusto is an Open Source remote laboratory management sys-
tem. It supports the development and administration of remote labo-
ratories. In WebLab-Deusto, remote laboratories are usually managed
through a priority queue. A key feature of WebLab-Deusto in this context
is its federation model. A simple scenario where two WebLab-Deusto in-
stances are using it is presented in Figure 13. On it, a user reserves a
laboratory in the University A, which forwards the request to University B
without requiring the user to be registered in University B. Essentially, the
plug-in consists of a client of WebLab-Deusto (extracted from WebLab-
Deusto, since it is also developed in Python). The client only requires a
URL, a username and a password. This username and password repre-
sent a federated node, and each federated node can use it to proxy all
their requests.

Go-Lab 317601 50 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 13: Federation algorithm in WebLab-Deusto

While WebLab-Deusto through the different institutions that compound it
provides different remote laboratories for engineering studies, some of
them are suitable for secondary schools. In particular in Go-Lab the
Archimedes laboratory is being used. An excerpt of the Archimedes lab
app can be seen in Figure 14.

Go-Lab 317601 51 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 14: Two of the four balls in the Archimedes laboratory

The Archimedes Lab can be accessed and tested directly via the preview
lab app page of the Smart Gateway:

• http://gateway.golabz.eu/public/labs/public/widgets/
archimedes/

3.5.2 iLab Shared Architecture (ISA)

The iLab Shared Architecture (ISA) is a distributed software architecture
developed at the Massachusetts Institute of Technology (MIT) that offers
online lab developers and users a common framework to use and share
Online Labs (Harward et al., 2008). It is an Remote Laboratory Manage-
ment System that separates the experiment logic from the management
part like managing users’ accounts, user authentication and other tasks
that follow a lab session. It is a middleware architecture with a service
broker providing common shared services for lab servers and lab clients.

According to the specifications defined in deliverable D4.5 a full version
of the plug-in for the iLab shared architecture was developed (see levels
of integration in D4.5). Since ISA requires a user to be uniquely identified
within a service broker to run an experiment, the developed plug-in bridges
the legacy system authentication. The interaction of the plug-in with the
legacy lab system (iLab service broker) is described in Figure 15. In this
diagram it was skipped the interactions that take place before between

Go-Lab 317601 52 of 71

http://gateway.golabz.eu/public/labs/public/widgets/archimedes/
http://gateway.golabz.eu/public/labs/public/widgets/archimedes/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

user, ILS Platform and Smart Gateway since it was described in detail in
deliverable D4.5.

Figure 15: ISA plug-in sequence diagram

This diagram assumes that the lab gadget was successfully loaded and
that Smart Gateway and iLab Service Broker administrators exchanged
the necessary credentials and that Smart Gateway and iLab RMLS are
registered respectively. ISA exposes its functionalities to external clients
and lab servers via a SOAP Web services API. When a request to reserve
a lab is started by the user, the plug-in contacts the iLab service broker
by calling a Web method launchLabClient(). The parameters provided are
described in Table 1.

This service will return a URL that will launch the particular lab client
requested. At the user’s side the lab client will be launched in the
OpenSocial container. The interaction that follows between lab client and
server is carried out using the legacy lab’s.

As previously mentioned, the plug-in for ISA is available by the Smart
Gateway as an out of the box support. It can be deployed with ISA ver-
sions 4.3.1 or higher. Earlier versions of ISA will have to be updated in
order to support the integration with the Go-Lab ecosystem.

Go-Lab 317601 53 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Table 1: Description of the launchLabClient service
Name Type Description
clientGuid string Unique ID of the client to be launched
groupName string Name of the group it belongs to
userName string User requesting access to it

authorityKey string

Unique ID of the Smart Gateway (as-
signed by service broker). This cre-
dential should be exchanged before-
hand with system administrators

start string Reservation starting time
duration long Duration of reservation in seconds

An example of a lab available to Go-Lab via the ISA plug-in can be ac-
cessed via the URL below:

• http://gateway.golabz.eu/public/labs/public/widgets/
radiolab1/

3.5.3 PhET

The PhET Project (Physics Education Technology) created useful simula-
tions for teaching and learning physics and makes them freely available
from the PhET website (http://phet.colorado.edu). The simulations (sims)
are animated, interactive, and game-like environments in which students
learn through exploration (Perkins et al., 2006). Many of the simulations
cover introductory high school and college physics, while others introduce
more advanced topics, e.g., lasers, semiconductors, greenhouse effect,
radioactivity, nuclear weapons, and Fourier analysis. Users, however,
have included students from grade school through graduate school. On
the website, the sims are organized under nine loose categories: Motion;
Work, Energy Power; Sound Waves; Heat Thermo; Electricity Circuits;
Light Radiation; Quantum Phenomena; Chemistry; Math Tools; and Cut-
ting Edge Research (Perkins et al., 2006).

PhET laboratories are already included in the Go-Lab repository and can
be used by teachers to be embedded into an ILS. Example of the Acid-
base Solutions lab: http://www.golabz.eu/lab/acid-base-solutions.
Figure 16 shows a PhET simulation accessed from an ILS.

Internally, the Smart Gateway regularly downloads the list of simulations
from PhET in each language, and generates an OpenSocial app that em-
beds the laboratory as an iFrame. This way, if a new simulation is created
in PhET, it is automatically available in the Smart Gateway, and therefore it
can be added to the Go-Lab repository. Furthermore, if a new translation
of a simulation is available at PhET (e.g., one simulation available in the
Go-Lab repository is suddenly provided in Spanish or Dutch), it will auto-
matically be available to those students accessing in that language without

Go-Lab 317601 54 of 71

http://gateway.golabz.eu/public/labs/public/widgets/radiolab1/
http://gateway.golabz.eu/public/labs/public/widgets/radiolab1/
http://www.golabz.eu/lab/acid-base-solutions

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

requiring anybody to perform any change.

Figure 16: PhET app in an ILS

Preview of a PhET lab (Acid-base Solutions lab) via Smart Gateway:

• http://gateway.golabz.eu/public/labs/public/widgets/
acid-base_solutions/

3.5.4 ViSH

The ViSH project5 is part of the FP7 Global Excursion Project6, which
provides a portal that lists, organizes and displays a wide set of open ed-
ucational resources including simulations and remote laboratories among
others. All the contents must be open and they are publicly available,
and HTTP APIs are provided for searching resources. The resources can
be listed alone, but they are commonly organized in "Excursions". An
Excursion is similar to a slideshow, but where each slide is a resource.
Resources include embedded pages (e.g., wikipedia), tests, Adobe Flash
objects, laboratories and other rich contents.

5http://vishub.org/
6http://www.globalexcursion-project.eu/

Go-Lab 317601 55 of 71

http://gateway.golabz.eu/public/labs/public/widgets/acid-base_solutions/
http://gateway.golabz.eu/public/labs/public/widgets/acid-base_solutions/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

The plug-in developed to support ViSH laboratories acts as a federation
proxy. It uses the search API (which is a JSON HTTP interface) to enable
the Smart Gateway administrator searching in the ViSH repository. This
way, the gateway4labs plug-in enables the Smart Gateway administrator
to search for resources, and if it is an excursion, it splits the excursion
into multiple apps that can be exported through gateway4labs to the ILS.
Figure 17 shows a slide of an existing excursion7 displayed in a ILS.

Figure 17: A ViSH resource included in an ILS

Preview of a ViSH lab (Pendulum Experiment) via Smart Gateway:

• http://gateway.golabz.eu/public/systems/public/system/
vishub/widgets/Excursion%25253A101%252540vishub.org/

3.5.5 UNR-FCEIA

The National University of Rosario (Argentina) have developed a physics
remote laboratory8. On it, students can create electronic circuits and test
currents. The remote laboratory is a pure HTML5 application that does
not require any external plug-in and internally it has an internal queue so if
multiple students attempt to use the laboratory at the same time, they will
be multiplexed in time. A mechanism for its inclusion in external systems
is developed in the system itself, relying on a cryptography mechanism.
Figure 18 shows an example of an experiment with a diode in an ILS.

7http://vishub.org/excursions/162.full
8http://labremf4a.fceia.unr.edu.ar/

Go-Lab 317601 56 of 71

http://gateway.golabz.eu/public/systems/public/system/vishub/widgets/Excursion%25253A101%252540vishub.org/
http://gateway.golabz.eu/public/systems/public/system/vishub/widgets/Excursion%25253A101%252540vishub.org/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 18: UNR-FCEIA lab in an ILS

The UNR-FCEIA plug-in takes advantage of this cryptography mecha-
nism. Basically, the plug-in uses a shared secret stored in the gate-
way4labs database to sign a message that provides details such as a
timestamp or who is accessing. Then, the user will be redirected to the
remote laboratory with that message. The remote laboratory will take this
message and verify that it has been signed correctly by a valid actor. This
way, the plug-in never contacts the remote laboratory directly.

Preview of UNR-FCEIA Electronics lab via Smart Gateway:

• http://gateway.golabz.eu/public/labs/public/widgets/unr/

3.5.6 Remlabnet

The Remote Laboratory Management System REMLABNET delivers re-
mote experiments for freshmen and secondary school students. It was
developed in the scope of the School Experimental System (ISES) re-
mote experiments. The RLMS is built using new components, designed
for the purpose, as Measureserver, web space management, data ware-
house, communication board of RLMS, etc. The communication server
provides, beside connection and diagnostics services also services for the

Go-Lab 317601 57 of 71

http://gateway.golabz.eu/public/labs/public/widgets/unr/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

teacher’s comfort as white board, IP telephony, simulation inclusion, test
management and reservation management (Schauer et al., 2014). Figure
19 shows a Remlabnet app included in a Go-Lab ILS.

The Remlabnet plug-in for the Smart Gateway was implemented using the
HTTP plug-in interface as described in section 3.4.3.

Figure 19: Remlabnet experiment with inclined plane in an ILS

Preview of Remlabnet Inclined Plane lab via Smart Gateway:

• http://gateway.golabz.eu/public/systems/public/system/
remlabnet/widgets/11/

Go-Lab 317601 58 of 71

http://gateway.golabz.eu/public/systems/public/system/remlabnet/widgets/11/
http://gateway.golabz.eu/public/systems/public/system/remlabnet/widgets/11/

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

4 Conclusion
This deliverable is the last one in the series of Lab Owner and Cloud Services.
It is the companion of D4.5, and the last update of D4.3. We presented
two different types of frameworks destined for lab owners to enable them to
create new labs or adapt existing ones in accordance to the Go-Lab platform
requirements. Those are the ‘Releases of the Lab Owner and Cloud Services’.

Templates for the development and deployment of new remote laboratories
using the Smart Device Paradigm have been generalized as opposed to the
example based approach in D4.3. A number of new lab examples were added
as well to the repository. The Smart Gateway includes new features (such
as support for internationalisation by teachers through the App Composer, a
caching mechanism or a scheduler). Additionally, support for new plug-ins
corresponding to other existing online laboratories (such as concord, QuVis
or Remlabnet) is implemented. Draft versions of the Protocol Translator have
been implemented to keep compatibility with the Smart Device, but due to the
required effort on implementing them, the use of ad-hoc plug-ins is adopted for
those systems.

The impact of this work is not limited to the enrichment of the Go-Lab ecosys-
tem. People involved in this task force are taking part of the IEEE P1876
Working Group on Networked Smart Learning Objects for Online Laboratories.
The last happening of this working group was in June 2015 as part of the
Exp.at’15 conference held at the Azores. Work presented in this document is
also part of the proceedings of this conference. The REV conferences are also
venues for exposing our work.

Collaboration with external lab owners has been a part of this work as well,
in order to better enrich our repositories. Several visits to EPFL have been
organised for collaborators from Remblabnet of the Czech Republic, Unilabs of
Spain, and Linkare TI of Portugal. The collaboration is still ongoing, updates
and additions are happening periodically.

Moreover, React of EPFL got a Swiss National Fund (SNF) under the program
SCOPES1 for 3 years. This program provides one Swiss institution and eastern
European institutions with funds for research-based cooperation. The Swiss in-
stitution is meant to provide the money and technology for its eastern European
colleagues. In this framework, React of EPFL is cooperating with the University
of Trnava, the University of Belgrade, and the University of Kragujevac in order
to connect new remote labs or adjust existing ones, and support their integration
in the Go-Lab infrastructure. React of EPFL is transferring the know-how to the
eastern European universities as per the solutions devised in D4.5 and D4.7.

1http://www.snf.ch/en/funding/programmes/scopes/Pages/default.aspx

Go-Lab 317601 59 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

5 Appendix A

5.1 BBB Description
The BeagleBone Black is the newest member of the BeagleBoard family. It
is a lower-cost, high-expansion focused BeagleBoard using a low cost Sitara
XAM3359AZCZ100 Cortex A8 ARM processor from Texas Instruments. It is
similar to the Beaglebone,but with some features removed and some features
added. The table below gives the high points on the differences between the
BeagleBone and BeagleBone Black:

Figure 20: Comparison between BBB and older BB

In the box containing equipment has (1)BeagleBone Black board, (1)USB cable,
and (1)catalogue that should be read.

Figure 21: BeagleBone Black Key Component Locations (Rev A5A)

Go-Lab 317601 60 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 22: BeagleBone Black Connector and Switch Locations (Rev A5A)

For more info on what can be added to the board as accessories, you can refer
to: http://elinux.org/Beagleboard:BeagleBone_Black_Accessories

There is no JTAG over USB support on the BeagleBone Black. JTAG is an unin-
stalled option as compared to BeagleBone board. To install the JTAG header,
P2 needs to be installed on the back of the board. P2 is a Samtec FTR-110-03-
G-D-06 connector and can be purchased from Samtec or any of their distribu-
tors.

WiFi Adapters for the BBB are listed on the table below, with compatibility re-
quirements. It is highly recommended that DC power is used when running
these dongles due to the current requirements of the dongles. It might be
needed to use an extension cable to move the dongles away from the planes
of the PCB. Sometimes standoffs will work. There have been instances where

Go-Lab 317601 61 of 71

http://elinux.org/Beagleboard:BeagleBone_Black_Accessories

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

when placed in a metal case, there can be WiFi issues as well1.

Dongle Works On

ASUS USB-N13 802.11
b/g/n

Angstrom

EDIMAX EW-7811UN Angstrom

D-Link DWA-125 Debian LXDE, Debian Gnome Desktop

D-Link DWA-121 Angstrom Debian LXDE, Debian Gnome Desk-
top

Belkin N150 Debian LXDE
TP-Link TL-WN727N Debian LXDE, Debian Gnome Desktop

Netgear WNA1100 Debian LXDE, Debian Gnome Desktop

Keebox W150NU Debian LXDE, Debian Gnome Desktop

5.2 myRIO Description
NI myRIO is a hardware/software platform ‘complete’ with the latest Zynq in-
tegrated system-on-a-chip (SoC) technology from Xilinx. It boasts a dual-core
ARM Cortex-A9 processor and an FPGA with 28,000 programmable logic cells,
10 analog inputs, 6 analog outputs, audio I/O channels, and up to 40 lines
of digital input/output (DIO). Designed and priced for the academic user, NI
myRIO also includes onboard WiFi, a three-axis accelerometer, and several
programmable LEDs in a durable, enclosed form factor (NI, 2014).

1http://elinux.org/Beagleboard:BeagleBoneBlack

Go-Lab 317601 62 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 23: NI myRIO Front View

Figure 24: NI myRIO Back View

The default I/O configuration is shown. It is customizable with the NI LabVIEW
FPGA Module. These are 0.1" pitch dual-row 34-position (17 x 2) IDC connec-
tors.

Go-Lab 317601 63 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

Figure 25: NI myRIO Expansion Port (MXP) Connectors

The default I/O configuration is shown. It is customizable with LabVIEW FPGA.

Figure 26: NI myRIO NI miniSystems Port (MSP) Connector

Figure 27: NI myRIO Top View

Figure 28: NI myRIO Bottom View

Go-Lab 317601 64 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

6 Appendix B

6.1 Queued Message Handler Design Pattern
The LabVIEW template presented in this deliverable, relies on the Queued Mes-
sage Handler (QMH) design pattern. QMH is a version of the ‘producer/con-
sumer’ design topolgy known to LabVIEW. The ‘producer’ and the ‘consumer’
are structures which respectively generate and consume messages. The ‘con-
sumer’ in turn can also generate messages. A message in this context is an
instruction with the data needed for its execution.
QMH uses queues to pass data between independent loops, allowing them to
run at independent rates since there is no data dependency among them. Each
queue can dispose of one consumer, but many producers, including the con-
sumer. Figure 29 below illustrates the above:

Figure 29: A QMH Queue

On a lower level as presented in Figure 30, the Queued Message Handler con-
sists of an event handling loop and at least one message handling loop:

Figure 30: Queued Message Handler

Go-Lab 317601 65 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

7 Appendix C

7.1 Recommendation #1: Running Servers on Ports 80 or 443
Educational institutions and public networks tend to usually block ports different
than 80 for http, and 443 for https connections. And hence, in order to avoid that
labs don’t get used because of the blocked ports, it is recommended to adopt
the default 80 for http, and 443 for https connections (Fielding et al., 1999).

While it might seem that this is an easy setting to configure, this is not true.
Ports 80 and 443 are system ports, meaning that only processes started with
the root (system) user are allowed to run on these ports. The common solution
developers use is starting the processes with ‘sudo’, granting the process
system rights; but it is not a good practice for security reasons (Hardiman,
2013).

A good practice is to use the ‘ipfw’1. With ipwf, the programmer writes connec-
tion forwarding rules using a format dictated by ipfw. This snippet of code is
an example for forwarding all calls comming on port 80 of the machine, to port
8080 (where the server’s process is running):

add 02000 fwd 127.0.0.1,8080 tcp from any to me 80

7.2 Recommendation #2: Methods for Video Streaming
In the templates of this deliverable, 2 methods for video streaming were used
with 2 different types of cameras:

1. Refreshed feed of still images at a fast rate with an IP camera

2. Video stream with the WebSocket protocol with a USB webcam

We will briefly present each of the modalities, and identify the pros and cons of
choosing one over the other.

7.2.1 Video Streaming with IP cameras

This method is of the easiest and most trivial for streaming video and embedding
it in html. The IP camera used in example 2.4.5 periodically sends still images to
the cloud. The location of the images is known, which permits the developer to
retrieve the images and refreshing the source at a fast rate, creating the illusion
of a video feed. This code snippet illustrates this example:

Listing 7.1: Code for Embedding Refresh Still Images in html
1 ...
2 <img id="img" src="http://128.178.5.183/image.jpg?cidx=2005906637"

border="0">
3 <script>
4 window.onload = function() {

1https://www.freebsd.org/doc/handbook/firewalls-ipfw.html

Go-Lab 317601 66 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

5 setInterval(updateImage, 500);
6 }
7 var image = document.getElementById("img");
8 function updateImage() {
9 image.src = image.src.split("?")[0] + "?" + new Date().getTime();

10 }
11 </script>
12 ...

With this method, the video stream has a high-resolution and isn’t prone to
delays caused by the limitations of the hardware (the Smart Device board). This
is because the source is simply embedded in the html page as an image, and
some JavaScript code takes care of refreshing it.
But using an IP camera may pose problems to lab owners since a unique IP is
needed for the camera. And hence, for each lab not only one IP is needed, but
two (for the Smart Device board and the camera).

7.2.2 Video Streaming with USB cameras

This modality follows the Smart Device Specifications by treating the camera as
a sensor, and using the WebSocket protocol to transmit the video feed. In this
case, binary WebSockets need to be used, which are not as trivial to handle as
text WebSockets.

Moreover, the communication and computation limitations of the Smart Device
board might impose some difficulties on the developer to ensure good com-
munication with the user client. One of the causes is the limited bandwidth
at which a Smart Device board can transmit data, and hence compromising
either the video feed or other services if the configuration of the video is not
handled properly. Another cause is the computation capabilities of the board
for processing the video feed before transmission, which might take longer than
the time acceptable for a real-time streaming.

For the Node.js template, binaryjs2,3 is one option for doing it. For the LabVIEW
template, a library has been written in order to handle the video streaming with
binary WebSockets. The corresponding code can be found in the directory:
‘services/Video’ of the LabVIEW template in section 2.3.1.

2http://binaryjs.com/
3http://www.olindata.com/blog/2014/01/file-uploading-and-streaming-binaryjs

Go-Lab 317601 67 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

8 Appendix D

8.1 Brief history of gateway4labs
In (Orduna et al., 2012), an integration of the WebLab-Deusto Remote Labo-
ratory Management System (RLMS) in a Learning Management System (Moo-
dle) and a Content Management System (Joomla) is described by University of
Deusto and UNED. The key concept was that a federation protocol was used
to perform this integration: WebLab-Deusto did not manage the authentication
or authorization of the individual students (managed by the Moodle and Joomla
administrators), but only the connection with the two tools. Both plug-ins for
Moodle and Joomla were developed, so they could connect to WebLab-Deusto
using its federation protocol, and they provided management layers (e.g., which
course could access what laboratory).

This concept, developed in September 2011, could not scale to other Remote
Laboratory Management Systems: while the concept could be applied, sup-
porting 3 LMS in 3 RLMS would require 9 plug-ins (3x3), since the plug-in for
Moodle for WebLab-Deusto would not work for the iLab Share Architecture. Fur-
thermore, each of these plug-ins dealt with their own management panels and
database tables.

For this reason, in May 2012 a pet project called lms4labs started being de-
veloped between University of Deusto and UNED, with no associated funded
project. Its focus was to avoid the problems presented in the previous solution,
by putting in the middle a core component, called LabManager. This compo-
nent supported an HTTP interface designed to be particularly small and for
being consumed by LMS/CMS/PLE. It also supported a plug-in mechanism for
supporting more than one RLMS. On June 2012, a first demo was available of a
single LMS (Moodle) using a single RLMS (WebLab-Deusto, and all its remote
laboratories). Now supporting 3 LMS and 3 RLMS would require only 6 plug-ins
(3+3). Additionally the size of each plug-in is considerably smaller, since all the
management was already provided by this core component. And if RLMS A
developed a plug-in for LMS A, then RLMS B would benefit from that plug-in,
too.

MIT (developers of the iLab Remote Laboratory Management System) was in-
terested in this approach, so they started supporting the project by providing two
developers between October 2012 and February 2013, adding support for IMS
LTI. This standard is supported by many LMS systems, including Moodle (since
version 2.2), so with this contribution, every RLMS would automatically support
all those LMS, in addition to those supported through plug-ins. A plug-in was
developed for Joomla. The results of this pet project were presented in (Orduna
et al., 2013).

Within the context of Go-Lab, lms4labs was chosen to act as an initial codebase
for the Smart Gateway, since it provided a plug-in mechanism for integrating
remote laboratories. As such, it was renamed to gateway4labs1. This way,

1http://gateway4labs.readthedocs.org/

Go-Lab 317601 68 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

the project grew, with new developers from other Go-Lab partners, and major
changes in the architecture for supporting OpenSocial (all the plug-ins had to
be changed), with more management layers, supporting public (with no authen-
tication) laboratories for constraints of the project and becoming more robust
and scalable. Most of its current features have been implemented for support-
ing Go-Lab. Additionally, new laboratories were supported (iLab, RemLabNet,
Concord, PhET, QuVis, ViSH, UNR FCEIA), compared to the initial WebLab-
Deusto.

Go-Lab 317601 69 of 71

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

References
Belter, J., Piper, P., & Durkin, C. (2014). myrio control and telemetry system

for formula-hybrid racecar. https://decibel.ni.com/content/docs/DOC
-37203. (Accessed: 2015-07-27)

Fielding, R., Irvine, U., Gettys, J., Mogul, J., Frystyk, F., Masinter, L., . . .
Berners-Lee, T. (1999). Hypertext transfer protocol – http/1.1. http://
www.rfc-editor.org/rfc/rfc2616.txt. (Accessed: 2015-07-29)

Frobinson, J. (2014). Myrio fpga audio pitch changer. https://decibel.ni
.com/content/docs/DOC-38990. (Accessed: 2015-07-27)

Hardiman, N. (2013). Do you sudo? learn the basics. http://
www.techrepublic.com/blog/linux-and-open-source/do-you-sudo
-learn-the-basics/. (Accessed: 2015-07-29)

Harward, V., del Alamo, J., Lerman, S., Bailey, P., Carpenter, J., DeLong,
K., . . . Zych, D. (2008, June). The iLab shared architecture: A web
services infrastructure to build communities of internet accessible labo-
ratories. Proceedings of the IEEE , 96(6), 931–950. Retrieved 2015-
01-06, from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm
?arnumber=4527087 doi: 10.1109/JPROC.2008.921607

Hughes, D. (2011). Real-time fpga pitch shifterr. http://www.eeweb.com/
project/dylan_hughes/real-time-fpga-pitch-shifter. (Accessed:
2015-07-27)

Karve, J., & Worman, T. (2014). Internet speedometer. http://makezine.com/
projects/internet-speedometer/. (Accessed: 2015-07-27)

Kridner, J. (2015). ps1rfid. http://beagleboard.org/project/ps1rfid/. (Ac-
cessed: 2015-07-27)

Molloy, D. (2014). The beaglebone and its application in engineering edu-
cation. http://www.ti.com/lit/ml/ssqw081/ssqw081.pdf. (Accessed:
2015-07-27)

NI. (2014). Ni myrio hardware at a glance. http://www.ni.com/product
-documentation/14604/en/. (Accessed: 2015-07-21)

NI. (2015a). Labview system design software. http://www.ni.com/labview/.
(Accessed: 2015-07-19)

NI. (2015b). Ni labview for higher education (university/college). http://www
.ni.com/labview/applications/academic/. (Accessed: 2015-07-19)

Normal, D., & Kridner, J. (2014). Dirty dish detector. http://makezine.com/
projects/dirty-dish-detector/. (Accessed: 2015-07-27)

Orduna, P., Botero Uribe, S., Hock Isaza, N., Sancristobal, E., Emaldi, M.,
Pesquera Martin, A., . . . Garcia-Zubia, J. (2013, October). Generic
integration of remote laboratories in learning and content management
systems through federation protocols. In (pp. 1372–1378). IEEE. Re-
trieved 2015-07-12, from http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6685057 doi: 10.1109/FIE.2013.6685057

Orduna, P., Sancristobal, E., Emaldi, M., Castro, M., Lopez-de Ipina, D., &
Garcia-Zubia, J. (2012, October). Modelling remote laboratories integra-
tions in e-learning tools through remote laboratories federation protocols.
In (pp. 1–6). IEEE. Retrieved 2015-07-12, from http://ieeexplore.ieee

Go-Lab 317601 70 of 71

https://decibel.ni.com/content/docs/DOC-37203
https://decibel.ni.com/content/docs/DOC-37203
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://decibel.ni.com/content/docs/DOC-38990
https://decibel.ni.com/content/docs/DOC-38990
http://www.techrepublic.com/blog/linux-and-open-source/do-you-sudo-learn-the-basics/
http://www.techrepublic.com/blog/linux-and-open-source/do-you-sudo-learn-the-basics/
http://www.techrepublic.com/blog/linux-and-open-source/do-you-sudo-learn-the-basics/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://www.eeweb.com/project/dylan_hughes/real-time-fpga-pitch-shifter
http://www.eeweb.com/project/dylan_hughes/real-time-fpga-pitch-shifter
http://makezine.com/projects/internet-speedometer/
http://makezine.com/projects/internet-speedometer/
http://beagleboard.org/project/ps1rfid/
http://www.ti.com/lit/ml/ssqw081/ssqw081.pdf
http://www.ni.com/product-documentation/14604/en/
http://www.ni.com/product-documentation/14604/en/
http://www.ni.com/labview/
http://www.ni.com/labview/applications/academic/
http://www.ni.com/labview/applications/academic/
http://makezine.com/projects/dirty-dish-detector/
http://makezine.com/projects/dirty-dish-detector/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6685057
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6685057
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462220
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462220

Go-Lab D4.7 Releases of the Lab Owner and Cloud Services

.org/lpdocs/epic03/wrapper.htm?arnumber=6462220 doi: 10.1109/FIE

.2012.6462220
Parvizi, B. (2013). Beaglebone black and pulse width modulation (pwm), con-

trolling a servo using html5, javascript, and node.js. http://digital
-drive.com/?p=146. (Accessed: 2015-07-15)

Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C.,
& LeMaster, R. (2006). PhET: Interactive Simulations for Teaching and
Learning Physics. The Physics Teacher , 44(1), 18. Retrieved 2014-07-
03, from http://scitation.aip.org/content/aapt/journal/tpt/44/1/
10.1119/1.2150754 doi: 10.1119/1.2150754

Petru, T. (2014). The myexplorer remote controlled vehicle. https://decibel
.ni.com/content/docs/DOC-35956. (Accessed: 2015-07-27)

Rick. (2015). Podtique. http://beagleboard.org/project/podtique/. (Ac-
cessed: 2015-07-27)

Salzmann, C., Govaerts, S., Halimi, W., & Gillet, D. (2015). The smart device
specification for remote labs. In Remote engineering and virtual instru-
mentation (rev), 2015 12th international conference on (pp. 199–208).

Schauer, F., Krbecek, M., Beno, P., Gerza, M., Palka, L., & Spilakova, P.
(2014, February). REMLABNET - open remote laboratory management
system for e-experiments. In (pp. 268–273). IEEE. Retrieved 2015-
07-12, from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm
?arnumber=6784273 doi: 10.1109/REV.2014.6784273

Go-Lab 317601 71 of 71

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462220
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462220
http://digital-drive.com/?p=146
http://digital-drive.com/?p=146
http://scitation.aip.org/content/aapt/journal/tpt/44/1/10.1119/1.2150754
http://scitation.aip.org/content/aapt/journal/tpt/44/1/10.1119/1.2150754
https://decibel.ni.com/content/docs/DOC-35956
https://decibel.ni.com/content/docs/DOC-35956
http://beagleboard.org/project/podtique/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6784273
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6784273

	Introduction
	Smart Device Overview
	Smart Gateway Overview
	Repositories of Templates and Examples

	Releases of Lab Owner Services
	Lab Owner Services Final Release Compared to the Initial Release
	Overview
	Templates Requirements
	Templates Specifications

	Templates
	Platforms Choices
	Templates Structure
	How to Use

	Examples
	Angular Position Control of an Electrical Drive: a LabVIEW Example on Desktop
	Angular Position Control of an Electrical Drive: a LabVIEW Example on myRIO
	Savonius VA Wind Turbine Control: a LabVIEW Example on myRIO
	Savonius VA Wind Turbine Control: a Node.js Example on BBB
	Angular Position Control of a Mini-Servo Motor: a Node.js Example on BBB
	Robot Arm: a Node.js Example on Raspberry Pi

	Releases of Cloud Services
	Cloud Services Final Release Compared to the Initial Release
	Introduction
	The Smart Gateway Architecture
	The Smart Gateway Software
	Support for Standards
	Existing Features
	Support for remote laboratories: The plug-in system
	New features
	Demo and Software Repository
	A prototype of the protocol translator
	Summary of the benefits for integrated remote laboratories

	Smart Gateway Plug-in Releases
	WebLab-Deusto
	iLab Shared Architecture (ISA)
	PhET
	ViSH
	UNR-FCEIA
	Remlabnet

	Conclusion
	Appendix A
	BBB Description
	myRIO Description

	Appendix B
	Queued Message Handler Design Pattern

	Appendix C
	Recommendation #1: Running Servers on Ports 80 or 443
	Recommendation #2: Methods for Video Streaming
	Video Streaming with IP cameras
	Video Streaming with USB cameras

	Appendix D
	Brief history of gateway4labs
	References

