
Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

Deliverable D5.2

Specifications of the Go-Lab Portal and
App Composer

Editor Sten Govaerts (EPFL)
Date 30th October, 2013
Dissemination Level Public
Status Final

c⃝2013, Go-Lab consortium

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Go-Lab 317601 2 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

The Go-Lab Consortium

Beneficiary
Number

Beneficiary Name Beneficiary
short
name

Country

1 University Twente UT The Nether-
lands

2 Ellinogermaniki Agogi Scholi
Panagea Savva AE

EA Greece

3 École Polytechnique Fédérale de
Lausanne

EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Edu-
cación a Distancia

UNED Spain

8 University of Leicester ULEIC United King-
dom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technol-
ogy Hellas

CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten -
Gemeinnützige Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear

Research
CERN Switzerland

16 European Space Agency ESA France

17 University of Glamorgan UoG United King-
dom

18 Institute of Accelerating Systems
and Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab 317601 3 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Contributors

Name Institution
Sten Govaerts, Adrian Holzer, Evgeny Bogdanov, An-
drii Vozniuk, Na Li, Wissam Halimi, Aubry Cholleton,
Denis Gillet

EPFL

Yiwei Cao IMC
Lars Bollen, Ton de Jong (peer-review) UT

Pablo Orduña, Luis Rodríguez UDEUSTO

Antonio Robles Gómez, Miguel Latorre García, Elio
San Cristóbal Ruiz

UNED

Panagiotis Zervas, Alexandros Trichos CERTH

Danilo Garbin Zutin CUAS
Sven Manske UDE
Sofoklis Sotiriou (peer-review) EA

Legal Notices
The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which
may be made of the information contained therein.

Go-Lab 317601 4 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Executive Summary
This deliverable presents the first version of the requirements and their derived
specifications for the Go-Lab portal (T5.1) and app composer (T5.3). The fi-
nal specifications will be presented in D5.6 (M36). The Go-Lab portal enables
teachers to search for online labs and create inquiry learning spaces (ILS) to
be used in their lessons with students. Such ILS can be shared by the teacher
to the community as best practices. The portal also enables search of these
shared ILS and relevant applications (apps). Nowadays, these apps are typi-
cally created by developers. To foster wide online lab adoption, teachers should
be able to aggregate the necessary resources and apps to support their in-
quiry lessons (or to enrich their lessons) without the need for a software de-
veloper. Additionally, we foresee the need of a large number of apps that are
domain specific or provide different pedagogical features to support students
(for instance differing in age, prior knowledge, followed curriculum and physical
abilities). Therefore, Go-Lab wants to enable teachers to create their own apps
using the app composer. The app composer is a suite of tools specifically tar-
geted towards teachers to translate, edit and create apps without programming
to support their pedagogical scenarios. Additionally, we discuss compatibility
of the portal and app composer with mobile devices, which are becoming more
popular in the classroom nowadays.

Go-Lab 317601 5 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Table of Contents

1 Introduction 8

2 The Go-Lab portal 10
2.1 Introduction & objectives . 10
2.2 Terminology . 10
2.3 Requirements of the Go-Lab portal 10

2.3.1 User story . 10
2.3.2 Functional requirements analysis 11
2.3.3 Non-functional requirements analysis 11

2.4 State of the art . 12
2.5 The Go-Lab portal architecture 13

2.5.1 Overall architecture . 13
2.5.2 Components and interface specification 14
2.5.3 Portal interoperability . 15

2.6 Implementation of the Go-Lab portal 17
2.6.1 The Lab Repository . 17
2.6.2 Inquiry learning space platform 19

3 The app composer 22
3.1 Introduction & objectives . 22
3.2 Requirements of the App composer 22

3.2.1 User story . 22
3.2.2 Functional requirements analysis 23
3.2.3 Non-functional requirements analysis 24

3.3 The App Composer mockups . 24
3.3.1 The main window . 24
3.3.2 The translator . 24
3.3.3 The builder . 28

3.4 State of the art . 32
3.5 Integration with the Go-Lab portal 33
3.6 Implementation of the App Composer 34

3.6.1 Implementation overview 34
3.6.2 App composer modules 35

4 Mobile devices compatibility 36

5 Conclusion 38

6 Appendix A: Lab metadata 39
6.1 The Metadata survey conducted in WP2 39
6.2 Go-Lab metadata specification 39

6.2.1 Lab metadata . 40
6.2.2 App metadata . 40
6.2.3 Resource metadata . 40
6.2.4 Inquiry learning space template (ILS) metadata 40

Go-Lab 317601 6 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

6.2.5 Taxonomy . 41

7 Appendix B: Go-Lab portal UI functionality 45
7.1 The lab repository . 45

7.1.1 The currently implemented features of the lab repository. 45
7.1.2 Future work on the lab repository 45

7.2 The inquiry learning platform (Graasp) 51
7.2.1 The currently implemented features of inquiry learning plat-

form. 51
7.2.2 Future work on the inquiry learning platform 54

7.3 Example inquiry learning spaces 54

8 Appendix C: Graasp development 56
8.1 Performance improvements . 56
8.2 Infrastructure improvements . 57
8.3 Activity Tracking . 59
8.4 OpenSocial 2.5 . 60
8.5 User Management . 62

8.5.1 Login with Facebook & Google+ 62
8.5.2 Anonymous login . 62

8.6 Other new functionality . 63
8.6.1 Google Docs integration 63
8.6.2 Mobile Graasp apps . 64
8.6.3 File uploading app . 65
8.6.4 Security improvements 66

8.7 Usability improvements . 67
8.7.1 Other improvements . 67

References . 69

Go-Lab 317601 7 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

1 Introduction
Although labs for teaching have become available recently, a widely used online
lab portal integrated with a ready-to-use learning environment is still missing
(see Section 2.4). Usually, individual online labs are operated, maintained and
promoted by the lab owners, which causes a high operational cost and limited
access. Through the Go-Lab portal, we aim to establish a federation of online
labs where lab owners can promote their labs, and teachers can find labs to
support their activities and share their resources with others. Online labs con-
sist of remote laboratories, virtual experiments and data sets/analysis tools (as
defined in the DoW).

In deliverable D5.1 we have already discussed personalisation techniques that
apply to the portal (e.g., recommendation strategies and internationalisation).
In this deliverable we present the first version of the specification of the Go-
Lab portal (Task 5.1) and the app composer (Task 5.3). The portal (Task 5.1)
contains both: (a) a repository of online labs, inquiry learning spaces (ILS), re-
sources and apps, and (b) a platform for inquiry learning. Teachers can use
the portal to search for labs, apps and ILS to use in their course and can cre-
ate an ILS to be used in their lessons. Such ILS can then be used by students
and teachers in a STEM course to teach scientific topics following inquiry-based
learning methodologies. Inquiry learning typically leads students through var-
ious phases, e.g., orientation, conceptualization, investigation, conclusion and
discussion, where students create hypotheses, evaluate them through experi-
ments and then reflect on them, possibly repeating the cycle (see D1.1).

To sustain the adoption of online labs and the Go-Lab portal itself, it is important
to support teachers with the aggregation of the resources and apps needed to
implement their lesson plan. The app composer (Task 5.3) enables teachers
looking for missing apps, to adapt existing and create new apps without the
need for a software developer. Through a graphical user interface teachers will
be able to adapt existing apps to their needs or design new apps that fulfill their
requirements. Furthermore, through the app composer teachers can translate
the user interface (UI) of existing apps to the mother tongue and language level
of their students.

With the recent high adoption of mobile devices in the classroom, it is important
for the Go-Lab portal to be compatible with such devices. Students should
be able to do investigations in online labs on tablets. To achieve this the app
composer should output apps that are compatible with mobile devices.

This deliverable consists of three major sections: one presenting the portal
specifications, one the app composer and the last one mobile compatibility is-
sues. The first two sections will be introduced with the objectives of the software,
specific terminology and the requirements. Subsequently, related research and
platforms will be discussed and contrasted with the Go-Lab approach. Following
this, the architecture will be presented and the current status of the implemen-
tation. For the app composer, we will discuss the current version of the user
interface mockups to elicit a better understanding of its scope. For the mobile

Go-Lab 317601 8 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

compatibility, we will discuss the implications and the chosen technical solu-
tions. Finally, a conclusion and an outlook on specifications and implementation
is presented.

Go-Lab 317601 9 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

2 The Go-Lab portal

2.1 Introduction & objectives
This section describes the requirements and specification of the Go-Lab portal.
Furthermore, since the portal is the central component of the Go-Lab environ-
ment and achieving a federation of labs is an important goal, the interoperability
aspects of the specification are discussed in more detail. The main part of this
section was published in (Govaerts et al., 2013). Finally, the current status of the
implementation will be discussed. But first, we will establish some vocabulary.

2.2 Terminology
Online labs are remote laboratories, virtual experiments or data sets accessible
from the browser through apps. Apps are Web applications (e.g., OpenSocial
gadgets), for example to operate a lab or support learning (e.g., via scaffolding
or other forms of guidance, see D1.1).

Inquiry learning spaces (ILS) are interactive web pages that can contain labs,
resources and apps to enable inquiry learning. Resources are typically texts,
videos and other materials to assist students. Teachers usually set up an ILS
for their students. An ILS can be shared with other teachers who can repurpose
and adapt it to fit their needs.

2.3 Requirements of the Go-Lab portal
We identify three types of portal users: lab owners, teachers and students. A
lab owner is a user who operates and publishes a lab and potentially prepares
an ILS to support the use of her lab. A teacher is a user who uses, modifies, or
creates an ILS and teaches with it. A student is a user who carries out inquiry
learning activities in an ILS. The following user story provides more context on
the portal use.

2.3.1 User story

On the Go-Lab portal John searches for interesting educational activities in-
cluding online labs for his physics lesson. He enters ‘particle collisions’ in the
search mechanism of the portal, after which he selects the Conservation of Mo-
mentum ILS from the search results. The system displays an overview of an
ILS using the HYPATIA lab that is used to analyse collisions of elementary par-
ticles at CERN. He opens the ILS in the Go-Lab environment to try it out. The
orientation phase and its resources are shown and he can edit the resources
and apps. There are numerous resources along with exact guidelines on how
to use this ILS in class. These guidelines were created by the author of the
ILS, Denis, a teacher who is working at a school located in Geneva. John finds
Denis’ approach quite complex and he decides to add a recommended scaffold-
ing app. Additionally, he rewrites some of the prompts and heuristics to better
fit the knowledge of his students. He is also using the Go-Lab search facility
for online labs and he gets back another CERN resource that is called LHC
Game. John integrates this lab to the orientation phase of the inquiry cycle as
he believes that it would be an ideal way to introduce his students to the CERN

Go-Lab 317601 10 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

experiments. After tweaking each inquiry learning phase, he teaches with the
resulting ILS in class. Afterwards, he decides to publish his ILS back on the
Go-Lab portal and share it on Facebook with his colleagues. He is also sending
a message to Denis to initiate a discussion on the use of HYPATIA and the very
interesting plug and play authoring process in which he was involved.

2.3.2 Functional requirements analysis

In this section we focus on the main functions of the portal, required by the
portal users to fulfill their needs.

• Publishing labs. Lab owners publish a lab and describe it with metadata.

• Creating ILS. Lab owners create ILS to demonstrate a lab and teachers
create ILS for students.

• Modifying ILS. Teachers adapt existing ILS, e.g., localize the content to
the mother tongue of their students or adapt it for a different age group.

• Publishing ILS. Teachers and lab owners publish their ILS to enable reuse.

• Using ILS. Teachers run activities using ILS. Students use ILS provided by
teachers to conduct experiments.

• Supporting Apps. Students are supported in their inquiry learning through
apps (e.g., a hypothesis app or online lab interfacing apps). Teachers
monitor student progress through learning analytics apps.

• Supporting lesson plans. Teachers create lesson plans for ILS. Students
use lesson plans provided by teacher when studying in ILS.1

• Searching Labs & ILS. Teachers search for labs and ILS using various
search filters, e.g., age and scientific domain.

• User management. To access all of the portal’s functionality, users log in
only once. Several login options are provided depending on the accept-
able privacy level.

• Social features. Teachers and lab owners tag, comment and rate labs and
ILS, and share them on social networks.

• Tracking user activities. The activities of portal users are tracked and used
for learning analytics, recommendation and scaffolding apps.

• Recommendation. Recommendation of labs, ILS and apps are provided
when searching, creating and editing ILS and labs.

• Scaffolding. Students receive assistance from scaffolding apps (e.g., prompts
and feedback) based on learning analytics and teacher configurations.

2.3.3 Non-functional requirements analysis

Apart from the previous requirements, there are also non-functional require-
ments that impact the design.

1Note that a lesson plan can also include offline activities.

Go-Lab 317601 11 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Go-Lab needs to provide a common, ubiquitously accessible ILS platform, so
schools do not need to spend resources on installing and administering soft-
ware. To provide lab federation and to support a common ILS platform, inter-
operability of the labs is essential. When targeting school students, special
attention to usability and data privacy (e.g., anonymizing the tracked user ac-
tivities) is needed. Additionally, usability is also top priority for school teachers
due to varying computer skill levels. The Go-Lab project aims to support 1000
schools in 15 countries, which requires a high scalability and availability of the
portal, as well as internationalisation support.

2.4 State of the art
Existing portal solutions for online labs are reviewed and summarized in Table 1
and we evaluate their fit with the requirements presented above. We identified
five main solutions in the research literature, namely the GOLC consortium’s
Lab2Go2 portal (Christian Maier, 2010), the Library of Labs (LiLa)3 (Richter,
Boehringer, & Jeschke, 2011) portal created by a European consortium using
MIT’s iLab Shared Architecture (ISA)4 (Harward et al., 2008), the LabShare5

(David Lowe, 2009) portal initiated by an Australian consortium, the University
of Deusto’s WebLab-Deusto6 (Garcia-Zubia, Ipina, Orduna, & Hernandez-Jayo,
2006), and the University of Colorado’s PhET interactive simulations reposi-
tory7.

Table 1 shows that the main requirements which are met by the existing portals
are publishing labs, searching for labs & ILS, using ILS and possibly tracking
user activities. Note that none of the other labs provide explicit ILS with inquiry
phases and guidance apps. However, A few labs provide some sort of struc-
tured activity that can be created, used, modified or published. As they do no
provide complete ILS with inquiry phases and guidance apps we consider that
they only partially support these requirements.

Furthermore, several of these portals offer some kind of user management sys-
tem and provide some social features. Unfortunately, several requirements are
not properly supported by any of the portals, such as facilities to create, mod-
ify and publish ILS. Furthermore, recommendation and scaffolding are both not
supported by any portal. In a nutshell, existing portals mainly work as repos-
itories of labs and provide only support to lab owners to publish labs and to
teachers to find and use labs. As they do not provide their own learning spaces,
it is difficult for such portals to empower teachers by not supplying them with
adequate support for modifying, reusing and publishing ILS. Go-Lab precisely
aims to fill this gap by providing support for both ILS usage and ILS creation.

2http://www.lab2go.net
3https://www.library-of-labs.org
4http://ilabcentral.org
5http://www.labshare.edu.au
6https://www.weblab.deusto.es
7http://phet.colorado.edu

Go-Lab 317601 12 of 70

http://www.lab2go.net
https://www.library-of-labs.org
http://ilabcentral.org
http://www.labshare.edu.au
https://www.weblab.deusto.es
http://phet.colorado.edu

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Functional requirements Lab2Go LiLa ISA LabShare WebLab PhET
Publishing labs + + + + + +
Creating ILS - ∼ - - - ∼
Modifying ILS - ∼ - - - ∼
Publishing ILS - ∼ - - - ∼
Using ILS - ∼ + + + ∼
Supporting Apps - - - - - -
Supporting lesson plans - + - ? ∼ +
Searching Labs & activities + + - - - +
User management ∼ ∼ + + + +
Social features + + - ∼ - +
Tracking user activities - ∼ ∼ + + -
Recommendations - - - - - -
Scaffolding - - - - - -

Table 1: Fit between existing portals and Go-Lab requirements. Legend:
requirement supported (+), partially supported (∼), not supported
(-), unknown (?).

2.5 The Go-Lab portal architecture
Based on the requirements, this section describes the Go-Lab architecture. For
its design, we have applied several software design principles (Vogel, Arnold,
Chughtai, & Kehrer, 2011). Foremost, the design should be loosely coupled,
meaning that each component requires little knowledge of the definitions of the
other components (Vogel et al., 2011). This principle enables abstraction of
each component, which allows a design that can change over time. Addition-
ally, each component should have high cohesion, which refers to the degree
to which a component is semantically self-contained (Vogel et al., 2011). Ap-
plying ‘separation of concerns’ enables modularity, as each component takes
care of a separate task (Vogel et al., 2011). Finally, the design should support
subsetability, which is the ability to produce subsets of the system. This allows
us to follow an iterative and incremental development strategy and have a basic
portal available quickly.

2.5.1 Overall architecture

The high-level Go-Lab architecture, illustrated in Fig. 1, consists of two main
components with a graphical user interface (GUI), namely the lab repository and
the ILS platform. Both are supported by components for user management and
tracking user activities for learning analytics and recommendation. By splitting
up the portal functionality in this way, each component serves a very different
purpose and we aim to satisfy the requirements and design principles stated
above. The components have well-specified interfaces and protocols, which
allow interchangeability (e.g., the ILS platform could use another repository that
implements the same specification of the Publisher & Instantiator interface)
and other third-party platforms can make use of each component separately

Go-Lab 317601 13 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 1: The architecture of the Go-Lab Portal.

enabling wider adoption of Go-Lab technology. The next section elaborates on
the components of the architecture.

2.5.2 Components and interface specification

The Lab Repository stores labs, apps and inquiry space templates (or ILS tem-
plates), together with their metadata. An ILS template describes the structure
and content (i.e., the labs, apps & resources) of an ILS. An ILS template basi-
cally functions as a blueprint with all the information to create a new ILS that
can be edited by teachers. Additionally, an ILS template can also contain a
learning scenario provided by teachers that describes how to use the ILS in a
pedagogical context.

The Inquiry Learning Space Platform (ILS platform) allows teachers and stu-
dents to use labs and apps in an ILS for inquiry learning. Teachers can create
an ILS consisting of labs, resources, and apps available from the lab repository
through the Instantiator interface and enrich the ILS with uploaded or online
resources. Afterwards, teachers can provide students with access to the ILS,
where students can conduct experiments.

Such an ILS can also be published on the lab repository via the Publisher
interface. While publishing an ILS, teachers provide metadata (see Appendix
A) that describes the ILS together with pedagogical information and possibly
a learning scenario. Such published ILS templates should not have to pass
a review cycle (which is for example the case for iOS apps). We will rely on
peer ratings and reviews to control the quality and sorting. By publishing an ILS
template to the lab repository, other teachers can find it there, reuse it in the

Go-Lab 317601 14 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

ILS platform using the Instantiator interface and adapt it to the needs of their
students.

The Learning Analytics and Recommendation component collects user activi-
ties through the Tracker interface from the lab repository and the ILS platform
that can anonymize the data for privacy reasons. The collected data is used to
provide teachers with learning analytics apps to monitor student progress; lab
owners can monitor the use of their labs, while students benefit through scaf-
folding apps. The tracked user activities are also employed for personalization
of the portal, e.g., through recommendation of apps, labs and resources. For
more information, we reference to deliverable D4.2, which is partially dedicated
to a full specification of this component.

The User Management component is in charge of user authentication and user
profile management through the Authenticator interface to the lab repository
and ILS platform enabling single sign-on for the portal. Furthermore, the user
management component will also be used by other services, such as the app
composer and the add-on services (see D4.2).

2.5.3 Portal interoperability

To achieve a federation of labs and to increase the potential uptake of the Go-
Lab software, interchangeability of the portal components and interoperability
using open specifications is important. The Go-Lab architecture achieves the
technical, syntactic, semantic and pragmatic interoperability levels of the Con-
ceptual Interoperability Model (Turnitsa, 2005). This section elaborates on in-
teroperability enabled through the labs, metadata and the interfaces between
components.

Lab interoperability enables the integration of labs with an ILS platform, which
is often difficult due to the wide variety of labs and their technical differences
(e.g., implemented as a Java Applet or a Flash application). To make labs in-
teroperable with learning environments different approaches are possible. For
instance, the LiLa project (Richter et al., 2011) bundles labs in SCORM (Bohl,
Scheuhase, Sengler, & Winand, 2002) packages, but this does not always en-
able proper interoperability since SCORM is not designed for interactive labs
and the support of the latest versions of SCORM by learning environments is
low. In Go-Lab, online labs will be provided as smart devices (Gillet, Jong,
Sotirou, & Salzmann, 2013) (see D4.1) that make labs more ubiquitous, au-
tonomous and self-aware. The smart device paradigm abstracts the details of
each lab on the server-side by providing a specified set of web services (Gillet
et al., 2013). This interoperability layer allows the ILS platform to run any lab
supporting the smart device paradigm and smart device compatible apps can
be reused to operate numerous labs.

Making existing online labs smart device compliant might require the implemen-
tation of the specified web services. In some cases it will be impossible to
change the lab implementation. To enable interoperability with such labs, we

Go-Lab 317601 15 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 2: Go-Lab metadata overview.

will provide a smart gateway (see D4.1) that transforms existing labs offered by
third parties to be conform to the smart device specification (Gillet et al., 2013).
Through both the smart device and smart gateway, interoperability between any
online lab and the ILS platform is enabled.

Metadata interoperability is the ability to exchange metadata with minimal
loss of content and functionality between different systems (NISO Press, 2004).
Several initiatives (Christian Maier, 2010; T. Richter & Zutin, 2012) are cur-
rently working on metadata specifications to describe online labs and related
resources. Their main reason is to allow wider discovery of online labs, but
metadata can provide more benefits. Apart from search and discovery of labs
and apps in the lab repository, metadata is also used to exchange data be-
tween the portal components to enable interoperability and exchangeability. For
instance, this interoperability and exchangeability allows exchanging the lab
repository with a third-party repository that applies the same interface and meta-
data specification; similarly the ILS platform could be switched. In the Go-Lab
project, metadata is used to describe labs, apps, resources and ILS templates
(see Fig. 2) in a linked data approach. Appendix A describes the efforts of the
cross-workpackage metadata discussions and the current version of the Go-Lab
metadata specification, based on a combination and extension (fitting the Go-
Lab requirements) of the ROLE Ontology and the GOLC specification (T. Richter
& Zutin, 2012). The reuse of existing open specifications will provide access to
existing labs and resources, as well as services.

Interface interoperability allows different implementations of components of
the Go-Lab portal to be interchanged. This can be achieved by specifying
the component interfaces and the data that is exchanged (metadata interop-
erability). For instance, the lab repository could use another learning environ-
ment that specifies the Instantiator and Publisher interface. Additionally, the
Authenticator interface enables the interchangeability of, for instance, the de-
fault user management with an LDAP implementation.

Go-Lab 317601 16 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

2.6 Implementation of the Go-Lab portal
Based on the design of the Go-Lab portal architecture, we implement the portal
using an iterative and incremental approach. The portal user interface (UI) has
been designed using participatory design among the Go-Lab partners together
with teachers using UI mockups8 (documented in D1.1). Those mockups have
been evaluated in multiple participatory design workshops and the results are
documented in deliverable D3.1.

The remainder of this section describes the past and future implementation de-
tails per main portal component.

2.6.1 The Lab Repository

The lab repository is implemented on top of Drupal 79. Drupal is a widely-used
open-source content management system that allows high scalability. We have
applied the experiences learned from the existing ROLE Widget Store (Dahrendorf,
Dikke, & Faltin, 2012) of the previous EU FP 7 IP project ROLE. Labs, apps, re-
sources and ILS templates are described with metadata (e.g., functionalities &
‘Big Ideas in Science’ categories). This metadata is used to describe, orga-
nize, manage, and search all types of learning content in the repository. Cur-
rently, we have achieved the first implementation phase, where the creation of
labs, resources, apps, and ILS templates, and the integration with the ILS plat-
form through the Instantiator interface has been implemented. Thus, now the
stored ILS templates can be instantiated within the ILS platform with one mouse
click. More details on how this process works in the UI of the portal is provided
in Appendix B (see Section 7.1). The latest version of the lab repository can be
found at http://go-labz.eu/.

Types of labs, apps, resources & ILS templates with metadata

In the lab repository, labs, apps, resources, and ILS templates are specified as
different content types in Drupal with each a specific set of metadata fields.
Some metadata fields are shared among content types, e.g., the ILS tem-
plate and lab type share the metadata grade level and all four types share the
language metadata field. The metadata specification partially reuses existing
metadata specifications, such as the metadata schema of the ROLE Widget
Store10. The metadata schema is further detailed in Appendix A.

Inquiry learning spaces with customized inquiry learning phases

An ILS makes use of the inquiry learning cycle, which consists of an ordered
set of inquiry learning phases (see deliverable D1.1). As depicted in Figure 3
an inquiry learning space consists of inquiry learning phases, which consist of
apps, labs, resources and their metadata.

In the Go-Lab portal, teachers are well supported to personalise an ILS for their
course needs (for more personalisation details, we refer to D5.1). The structure

8The mockup is available at http://www.go-lab-project.eu/content/prototypes
9Drupal, http://www.drupal.org

10The ROLE Widget Store, http://www.role-widgetstore.eu/

Go-Lab 317601 17 of 70

http://go-labz.eu/
http://www.go-lab-project.eu/content/prototypes
http://www.drupal.org
http://www.role-widgetstore.eu/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 3: The structure of the inquiry learning space in the lab repository.

of an ILS can be personalised as follows:

• Inquiry learning phases: Teachers can organise the inquiry cycle the way
they want. Go-Lab provides an inquiry learning cycle as a starting point.
The teachers can add or remove inquiry phases to fit their needs.

• Renaming inquiry learning phases: The portal will allow teachers to re-
name inquiry learning phases to provide a term in a language compre-
hensive to the students. The portal keeps track of the original ‘Go-Lab’
name of the space to provide this information to some apps who can act
on knowing in which context they are being used, e.g., a hypothesis tool
could allow students to edit the hypothesis in the conceptualisation phase
but only view the set hypotheses in the conclusion phase.

• Collecting labs, apps, and resources in each phase allows teachers to
create a unique ILS for each course.

• Translation of an ILS: Teachers can select the language of the UI of the
ILS platform for their students and can provide the content itself in the
appropriate language.

Search learning content in the lab repository

The search functionality will be implemented in two steps: metadata-based
search and advanced search.

Metadata-based search in the lab repository supports learning content search
by single metadata fields. For example, teachers may search all labs related to
buoyancy, or in Greek. Since some content types share certain metadata fields,
it is possible to search across content types. Currently the metadata-based

Go-Lab 317601 18 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

search is implemented as facetted search. In the future, we will also provide
keyword search.

Advanced search will be implemented in the lab repository, such as search labs
by Big Idea. The required fields for the advanced search will first be surveyed
in participatory design usability workshops. In addition, since the Go-Lab Portal
supports internationalisation, teachers should be able to search for learning
content in their own language as well as in other languages. For example, a
Spanish teacher searches for an ILS in Spanish. However, if there is no suitable
ILS, she should be able to search for English content.

2.6.2 Inquiry learning space platform

The ILS platform is implemented on top of the Graasp platform (Bogdanov
et al., 2012) (as described in Task 5.1), which is a social media platform that
supports personal and collaborative activities using resources and OpenSocial
apps. Since the start of the project, Graasp has been under continuous de-
velopment to mature the platform and integrate Go-Lab specific requirements.
Currently, Graasp has already been extended to create a simple ILS and a first
version of a dedicated student view of the ILS has also been implemented.

This section will first describe how ILS are created in Graasp. Afterwards, we
will discuss the development status and plans of the different components and
interfaces of the portal architecture.

Creating an ILS in Graasp

In the current version of Graasp teachers can already create ILS. The imple-
mentation is currently a prototype, hence the mechanism to create an ILS is still
under discussion and due to change in the future. However, in this section we
will discuss the current idea behind creating an ILS in Graasp.

A special type of space for an ILS has been created in Graasp. When a space of
the ILS type is created it automatically contains five subspaces, each subspace
is one inquiry learning phase of the Go-Lab inquiry cycle. Figure 4 illustrates
the ILS in blue and the subspaces in yellow. Teachers can then add apps, labs
and resources to each phase subspace. These apps, labs and resources will
be shown only in that phase in the student view of the ILS. Teachers can add
a description to a phase subspace that provides an explanation and context to
students on how to operate the apps, labs and resources in that phase. Ap-
pendix B explains how to accomplish this in the Graasp GUI and illustrates the
student view of the ILS.

In the portal mockups described in deliverable D1.1, the toolbar concept was
introduced as a place to provide apps that should be available in all the inquiry
phases. Such toolbar apps can be added to the inquiry learning space itself
(the blue space in Figure 4). As briefly mentioned previously, the apps are only
available in one specific phase space. However in certain situations such apps
want to communicate data. For instance, a hypothesis creation app in the ‘Dis-
cussion’ phase space would like to access the hypotheses created by the same
app in the ‘Conceptualisation’ phase space. To achieve this, we have proposed

Go-Lab 317601 19 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 4: The structure of an ILS in Graasp.

the concept of a data communication space, called ‘Vault’ in Figure 4. Apps
located in one phase space can write data files in this space and other apps
from other phase spaces. This way we can provide flexible data communica-
tion between phases, while keeping the privacy concepts of spaces. This ‘Vault’
idea is currently a proposal and in the future we will further investigate this issue
before implementing it.

The interfaces between the lab repository and the ILS platform

In order to support the portal interoperability, the portal architecture defines sev-
eral interfaces between the lab repository and the ILS platform. We summarise
the current and future development for an overview below.

A first version of the Instantiator interface is implemented in the lab repository
and Graasp using JSON. When teachers find a suitable ILS template on the lab
repository, they can export the template into Graasp for direct use or further
editing.

As the next step, an RDF interface will be created to exchange ILS templates
together with their metadata between the lab repository and the ILS platform
through the Instantiator and Publisher interface. In the lab repository, map-
pings between the metadata of the content types and RDF need to be created.
Several RDF namespaces may be used to describe labs, apps, resources, and

Go-Lab 317601 20 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

ILS templates, e.g., based on FOAF11, the ROLE ontology or Dublin Core12.

Part of the communication with the learning analytics and recommendation
component’s Tracker interface has also been integrated in Graasp using the
OpenSocial specification together with the ActivityStreams specification to rep-
resent the user activity data (Vozniuk, Govaerts, & Gillet, 2013). For further
details about the implementation status, we refer to Appendix C. The details on
the architecture of the Learning Analytics service will be described in deliverable
D4.2 and the recommendation service is detailed in D5.1.

In a later phase, the user management service and other more advanced func-
tionality will be implemented. The metadata schema will be gradually imple-
mented and extended if new requirements appear.

11FOAF, http://xmlns.com/foaf/spec/
12Dublin Core, http://dublincore.org/

Go-Lab 317601 21 of 70

http://xmlns.com/foaf/spec/
http://dublincore.org/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

3 The app composer

3.1 Introduction & objectives
The app composer is a service that enables teachers to develop web applica-
tions. In the context of Inquiry Learning Spaces (ILS), teachers typically com-
pose such spaces with existing apps available in the lab repository, but for some
specific learning scenarios they can require missing functionality. The app com-
poser is a web tool that allows teachers to create or adapt apps to provide such
missing functionality. The adaptation of these apps will include translation of
existing apps, as well as the adaptation of existing apps and the creation of new
apps.

This section elaborates first on the requirements of the app composer. After-
wards several mockups of the app composer’s preliminary UI design are de-
scribed. After that, the current state of the art related to the app composer is
presented. Finally, a section is dedicated to the future implementation options.

3.2 Requirements of the App composer
The app composer will be used mainly by teachers. Students will use the re-
sulting apps and lab owners are typically experts who will create their own apps
without the assistance provided by the app composer, except if they are willing
to exploit some specific services such as learning analytics.

The app composer assists teachers by making it easy to develop or customize
apps. Three types of teachers are identified:

• Teachers who will not need additional apps and who therefore will not use
the app composer.

• Teachers who will only need to customize existing apps.

• Advanced teachers who will build their own apps or even simulations.

The following sections first introduce a user story, in order to provide a better
understanding of the application composing process. Afterwards, the functional
requirements which can be extracted from the story are detailed. Finally, the
non-functional requirements are specified as well.

3.2.1 User story

Johanna is a high school teacher from Stockholm. She wants to create an ILS
for her physics class. Searching the portal, she finds a pendulum laboratory,
which is only available in English, but she doesn’t find any proper formula ed-
itor that will assist students while using the pendulum. She first goes to the
app composer, translates the pendulum laboratory to Swedish for her students
and shares her translation with other Swedish teachers on the portal. Then, in
the app composer, she builds a new app with which she defines formulas and
publishes it in the portal. As a result, she can now build an ILS using a pen-
dulum laboratory in Swedish and a formula system in which students can make
calculations easily. She also wants to use an experiment design app adapted
for the context of the pendulum. She goes back to the app composer, and se-

Go-Lab 317601 22 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

lects the “experiment design app” template, she adapts the required fields for
the pendulum case, so the students can provide different variables related to
the pendulum and check what she expects to happen. The teacher does not
need to know how to program to use the app composer and adapt the ILS to
the requirements of her class.

3.2.2 Functional requirements analysis

The app composer has certain functional requirements, most of which are de-
rived from the previous user story. These requirements are as follows:

• Adapting existing apps.

– Listing existing modifiable apps developed by Go-Lab: A selection of
apps will be available for teachers as a basis for adaptation.

– Customizing the existing apps to add different models: Users can
configure a selection of existing apps with data or models specific to
their learning scenarios.

• Building new apps.

– Creating completely new apps: Users can create apps from scratch
using a visual editor to draw the UI and interactive tools for developing
the logic without needing an external programmer.

– Developing graphical simulations: Providing the users with the capa-
bility of defining graphical simulations with relative ease, without re-
quiring the expertise which would be required by programming them
from scratch.

• Publishing modified or new apps.

– Publishing apps on the lab repository: Teachers can share the apps
they have created or translated with the Go-Lab community by pub-
lishing them on the lab repository.

– Integrating apps with the portal: The app composer communicates
with the portal to allow teachers to search for existing apps to trans-
late and save apps to their ILS or lab repository.

• Translating apps.

– Different languages: To support Go-Lab in European schools, the
internationalisation of apps is required (see deliverable D5.1).

– Different target groups: Students targeted by Go-Lab range from 10
to 18 years, which means that we have to deal with different language
proficiency levels.

• General management.

– Saving draft versions: Often users will require several sessions work-
ing with previously saved versions before finishing their applications.

– Sharing versions with other teachers: The apps can be published on

Go-Lab 317601 23 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

the portal and repurposed by other teachers.

3.2.3 Non-functional requirements analysis

Apart from the previous requirements, there are also several non-functional re-
quirements that impact the design.

Although standard internationalisation based on language or region is common
practice (as was discussed in Deliverable 5.1), this might not be sufficient for
Go-Lab. Go-Lab laboratories and ILS target users with a wide range of ages
and varying language proficiencies. In D5.1, we solved this problem by allowing
internationalisation for each language and region, but also for each age group.

A single instance of the app composer will be integrated with the portal. Third
parties might deploy adapted versions of the app composer. The app composer
should be able to serve thousands of teachers. It will thus require high scalabil-
ity, reliability, and availability. The users of the app composer will come from all
countries. Therefore, internationalisation support for the app composer UI will
also be required.

The teachers who will use the app composer will have a varying degree of com-
puter expertise. They will not always have the time or willingness to dedicate
much resources to learning new applications. Therefore, it is of utmost impor-
tance that the app composer is intuitive, user-friendly and easy to use. This is
particularly true for the translation and adaptation features of the app composer,
which are especially aimed for non-technical teachers.

3.3 The App Composer mockups
To explore the scope and possibilities of the app composer, we have started with
creating paper mockups to explore different concepts and designs. The benefits
of such mockups are twofold: (i) they allow to discuss something more tangible
without investing resources in development and (ii) they allow to have very early
prototypes with limited interactivity that can be used in usability evaluations.
Such evaluation sessions will be conducted in the near future to illicit further
requirements and evaluate the usability of our current design. The mockups
basically consist of three modules: one allows users to translate an app, one
allows to adapt an existing app, and the third one allows users to build a new
app. In the next sections, we will present the current versions of the mockups in
a separate section for each module.

3.3.1 The main window

The main window (see Figure 5) provides access to the three different modules.
Each button allows the user to navigate to the separate modules. The remainder
of this section will describe each module in more detail.

3.3.2 The translator

One of the requirements of the app composer (see Section 3.2) is to enable
teachers to translate the UI of an app easily into the language required by the
student. This is important because we target schools in many European coun-

Go-Lab 317601 24 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 5: The main starting screen of the app composer.

tries and Go-Lab itself does not have the resources and knowledge to provide
appropriate translations. Furthermore, Deliverable 5.1 has described the per-
sonalisation techniques related to languages. In this deliverable we discussed
the issues of different language proficiency in the age ranges of the students
we target. We aim to solve this problem by allowing the translator to enable
translations for a specific language and an age group. The following mockups
have been designed to solve this task.

Figure 6: The first step to translate an app – select the app.

Once the user selects the ‘Translate’ option in Figure 5, she is presented with
the screen in Figure 6. In this first step, she can provide the URL of an app she

Go-Lab 317601 25 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

wants to translate or select an app from the lab repository. Once an app has
been selected, the user can select the language in Figure 7.

Figure 7: The second step to translate an app – select the languages.

The next step (shown in Figure 7) allows the user to select the target and source
language. Since the user might not be comfortable with English as the source
language or the app might not provide an English translation yet, we leave the
choice up to the user from which language to originate the translation. To ac-
commodate the requirements described in the deliverable D5.1 to support lan-
guage personalisation for different age groups due to varying language profi-
ciency, we allow next to the language also to specify the target group.

In the final step of the translator (see Figure 8), all the textual UI labels are
presented to the user and an automatically generated translation (e.g., using
Google Translate1) into the target language is given. The user can accept the
translation by clicking on the ‘V’-button next to the label or edit the translation of
course. By navigating to the ‘Preview’ tab, users can preview their translation to
validate its correctness in the context of the app, see Figure 9. The translation
can then finally be saved and will be available for all users. The translator will
also allow users to select languages and target groups that have already been
translated to correct existing translations.

1Google Translate, http://translate.google.com

Go-Lab 317601 26 of 70

http://translate.google.com

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 8: The third step to translate an app – edit the translations.

Figure 9: Another view of the second step to translate an app – preview
the translated app.

The adaptor.

Inquiry learning apps often require some small adaptations based on the spe-
cific ILS and course they are used in. Examples could be teachers who want

Go-Lab 317601 27 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

to configure a context map with specific concepts and relationships to support
the students in creating a specific concept map for the problem at hand. Since
quite a few of such inquiry learning apps would benefit from some adaptation to
the specific context of the ILS or students, we have decided to support this in
the app composer through the adaptor module.

Figure 10: The first step to adapt an app – select the app to adapt.

After selecting the ‘Adapt’ module in Figure 5, users are asked to select the
inquiry learning app that they want to adapt (or configure), see Figure 10. De-
pending on which app they want to adapt, a different UI will be provided. In our
mockups we took the example of adapting the Concept Mapper app that allows
students to create concept maps. The Concept Mapper app can be adapted by
editing the default concepts and relationships. Figure 11 demonstrates the UI
to adapt (remove and add) the concepts and relationships of the Concept Map-
per app. Similar to the translator, users can verify if the created concepts and
relationships actually allow to build an appropriate concept map in the ‘Preview’
tab, see Figure 12.

Once the Concept Mapper app has been adjusted, the adapted app can be
saved in an ILS created by the user in ILS platform. Figure 13 allows the user
to select one of her ILS’ and save the adapted Concept Mapper app.

As mentioned the UI to adapt other inquiry learning apps will likely look different,
but these mockups illustrate the concept itself.

3.3.3 The builder

The third option of the main screen (see Figure 5) provides the user with the
possibility to build her own app from scratch or using basic templates. The app
builder allows teachers to create new apps to fit their needs without advanced
programming or the help of an external programmer. The builder will enable

Go-Lab 317601 28 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 11: The second step to adapt an app – create the configuration of
the app.

Go-Lab 317601 29 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 12: The alternative view of the second step to adapt an app – pre-
view the adapted app.

Figure 13: The third step to adapt an app – save the adapted app.

Go-Lab 317601 30 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 14: The advanced view editor of the app composer.

teachers to create missing apps to support their learning scenarios.

Most likely, the builder module of the app composer will only be used by a
fraction of the teachers since creating an app from scratch will always be a
rather complex process. There is a tradeoff: by making systems very simple,
the system often becomes less powerful. If we want to create a general app
builder, then it will probably require an investment of the teachers to learn how
to operate this tool. Furthermore, approaches for non-programmers to adding
advanced logic to apps, such as graphical programming, exist, but also often
have a learning curve. Therefore, we regard the builder module as a tool for
advanced, expert teachers.

Due to the large scope of the builder module we will only discuss two mockups
here. Figure 14 illustrates the ‘View’ module of the builder, which allows the user
to draw and configure the user interface. In the center of the screen the app’s
UI is shown. Such a UI can be assembled by dragging and dropping different
components available in the panel on the left side. The column with icons next
to the left panel provides some basic functionality to load and save your app and
manipulate the graphical components of the app’s UI. On the right-side panel,
one can set different properties of the component that is selected in the center
part. In Figure 14, the user has selected the formula editor and has configured
for instance its size to 100x20px.

Application logic can be added to the UI components composed in the view
module. One can configure this in the ‘Logic’ module, which is accessible
through the tabs on top of the left-side panel. This logic module allows: (i)
to define variables that can be used in the logic and view, (ii) to model progress
and animations, (iii) to program the logic using the defined variables and (iv) to
describe events and their effect. Figure 15 demonstrates the ‘Variables’ mod-
ule that allows users to define the variables they want to use in the ‘Progress’,
‘Code’ and ‘Events’ modules. Furthermore, these variables can be used in the

Go-Lab 317601 31 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 15: The advanced logic editor of the app composer.

‘View’ module as is illustrated in Figure 14. On the right panel of the view module
one can configure the attributes of the formula editor component. The variables
of the formula editor can be linked to the variables defined in the ‘Variables’
module of Figure 15.

The layout with the ‘View’ and ‘Logic’ modules and its submodules ‘Variables’,
‘Progress’, ‘Code’ and ‘Events’ is based on the design of EasyJava2 a tool to
help non-programmers to create interactive simulations in Java, which is unfor-
tunately not compatible with mainstream tablets.

3.4 State of the art
The app composer can be defined as a tool to translate, adapt and build web ap-
plications tailored to the teachers’ needs with just a few clicks. Open standards
(e.g., OpenSocial gadgets and W3C widgets) have facilitated the proliferation of
software for mobile and desktop platforms. However, current authoring tools for
such apps still demand a strong technical background, while teachers do often
not have the required skills to create with such authoring tools the apps they
need to support their courses.

Through our survey of scientific literature, we found two principal solutions for
creating these kinds of apps: the Widget Design Authoring Toolkit (WIDGaT)
from JISC and MyCocktail Romulus mashup builder. WIDGaT is considered
as “the first online ‘code free’ widget creation tool” both for teachers and stu-
dents (Green, Pearson, Gkatzidou, & Perrin, 2012). WIDGaT provides a visual
drag-and-drop based UI to create apps based on the W3C widget specification.
On the other hand, MyCocktail (Chudnovskyy et al., 2012) focuses on combin-

2EasyJava, http://fem.um.es/Ejs/

Go-Lab 317601 32 of 70

http://fem.um.es/Ejs/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 16: Communication between the app composer and the Go-Lab
portal components.

ing (mashing up) information from different data sources through web services
using a GUI.

Although the authoring process is described as a straightforward task, both
WIDGaT and MyCocktail require moderate to advanced programming skills and
the manipulation of services is not easily accessible to non-programmers. Fur-
thermore, internationalisation support is not present. To implement most of the
logic, one has to write program code and text editors must be used to check
the final result of the app. As a matter of fact, these authoring tools rely on the
features provided by social platforms. Apps developed with them can also be
tested directly inside the platform with the software provided by the social net-
work, such as the Google Gadget Ad Editor3 or the Open Social Explorer4, both
of them based on the OpenSocial Dev App5. Such text-based editors could also
be an option for advanced app composer users, where the development can be
guided by providing code templates and samples.

3.5 Integration with the Go-Lab portal
The app composer is a suite of tools (consisting of the Translator, the Adaptor
and the Builder) that can be seen as a platform that co-exists next to the two
portal platforms, namely the lab repository and the inquiry learning space plat-
form. Nonetheless, the app composer needs to communicate with the portal
components to support its requirements.

Figure 16 demonstrates how the app composer interconnects with the Go-Lab

3Google Gadget Ad Editor, http://www.google.com/ig/modules/gadgetads.html
4Open Social Explorer, https://github.com/OpenSocial/explorer
5OpenSocial Dev App, http://osda.appspot.com/

Go-Lab 317601 33 of 70

http://www.google.com/ig/modules/gadgetads.html
https://github.com/OpenSocial/explorer
http://osda.appspot.com/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

portal components. The communication is driven by two use cases of the app
composer (based on the requirements and mockups):

• Loading an app from the portal: When one wants to translate an app, it is
possible to select an app from the lab repository (as illustrated in Figure 6).

• Saving an app to the portal: When one finishes translating, building or
adapting an app, it is saved back to the portal, either to the lab repository
to share the app with the Go-Lab community or to the user’s ILS.

To support both use cases, the portal architecture has been extended with a
Searcher interface, as illustrated in Figure 16. The Searcher interface allows
the app composer to search an app in the lab repository to load it for translation.
To save an app, the app composer makes use of the Publisher interface to save
the new or edited app in the lab repository. If the user wants to make only use
of his new or edited app in his own ILS, the app can be saved into the inquiry
learning space platform through the Instantiator interface.

3.6 Implementation of the App Composer
This section describes the technical options for the future implementation of the
app composer. First, an overview of the implementation is presented, then the
considerations on the different composer modules are detailed, after which the
common base tier is presented and finally considerations for mobile devices are
presented.

3.6.1 Implementation overview

The App composer counts three different modules: the translator, the adaptor
and the expert mode (see Section 3.3 for details). All of them have a subset
of common services (e.g., user management and publishing an app). These
features will be implemented in a base tier common to the three composers
(see Figure 17). On top of this common base tier, the three composers remain
decoupled and no significant amount of code is shared among them (other than
the common base tier).

Figure 17: Internal architecture of the app composer

Go-Lab 317601 34 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

3.6.2 App composer modules

The translator module will extend the OpenSocial internationalisation specifica-
tion to support target groups (i.e., age ranges). The client side of the trans-
lator module is quite straightforward and generally applicable to any OpenSo-
cial app that requires translation. The server side must support our extended
OpenSocial internationalisation specification to support app translations for tar-
get groups.

The adaptor module will be mostly client-based. It will define a plug-in system
on top of which software developers can create new templates to create an app
model or configuration and integrate them using the plug-in. The list of apps
that can be adapted can be extended by creating a new configurable app and
a template to create the model or configuration for that specific app. From that
point, the plug-in will define how the customization is shown and will generate
the models and configurations to adapt the app.

Finally, the builder modules (the ‘expert’ module) must support the following
components:

• A rich client that provides a simple IDE6: This could be built from scratch
for this particular context, or it could be built on top of the surveyed open
source solutions, such as WIDGaT or MyCocktail (see Section 3.4). The
former would be more easily extended for Go-Lab specific requirements
and can be designed particularly with teachers in mind. The latter would
make it possible to advance faster in the first stage of the development.

• A runtime engine: The rich client will generate a representation of the
app that is translated to an OpenSocial gadget by the runtime engine.
After translation, the runtime engine can execute the widget for testing and
debugging purposes. This runtime engine will heavily rely on OpenSocial
for supporting the features of any OpenSocial API.

The common base layer will integrate Apache Shindig7 as app engine.

6IDE = Integrated Development Environment
7Apache Shindig, http://shindig.apache.org/

Go-Lab 317601 35 of 70

http://shindig.apache.org/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

4 Mobile devices compatibility
With the wider adoption of mobile devices in the classroom recently, support
for mobile devices such as smartphones and tablets is very important for Go-
Lab. Such compatibility is important in the design of both the portal and the app
composer. The portal should allow students and teachers to do experiments
on mobile devices in an ILS. To enable this, the app composer should output
mobile-ready apps. In this section, we discuss the decisions we have taken so
far to ensure mobile compatibility.

In order not only to sustain cross-device compatibility but display a familiar look
and feel as well, it is rather important that the Go-Lab Portal, ILS and the app
composer-created apps also comply with general UI principles of the Go-Lab
project. Regarding the UI layout of the Go-Lab portal and App Composer gen-
erated apps, we have decided to use the responsive design1 version of Twitter
Bootstrap2. The responsive layout is particularly helpful for rendering apps on
smaller screens where the lack of available screen real estate is a serious mat-
ter to consider. Responsive design also offers many advantages regarding text
re-flowing and image scaling that are mainly based on grid layouts and me-
dia queries3. For instance, with this technique, we can easily optimize an app
that normally encompasses a horizontal toolbar in a regular viewport (desktop
browser) to be presented as a vertical toolbar in portrait screens (tablet devices
or mobile phones) or even be completely hidden when not needed.

Moreover, in the general UI layout and design section, the use of the Twitter
Bootstrap framework will offer a consistent user experience across all devices
and platforms, by using the very same user interface elements like form fields,
buttons and Bootstrap utility widgets, when their inclusion is foreseen in the
Go-Lab portal or in the app composer. When the use of native or third party
Bootstrap widgets is not fulfilling the needs of the particular app or the portal,
then jQuery UI4 components can be used. jQuery UI can be themed to look
similar to Bootstrap with the use of jQuery UI Bootstrap5 so that any change in
the familiar look and feel will be minor.

In general, the app composer generated apps should solely rely on HTML5-
compatible components, such as HTML, JavaScript, CSS3 and HTML5 media.
As a matter of fact, streaming media affects the mobile device compatibility. The
preferred media streams in Go-Lab are HTML5 compatible media. As far as the
streaming video is concerned the HTML5 supported formats are MP4, WebM
and Ogg and in the audio streams MP3, WAV and Ogg. Although, any use
of video or audio in Adobe Flash or Java Applet format should be discouraged
if not avoided, when none of the recommended media types is available as a
source for the to-be-created widget or lab then any video or audio stream can
be used. The author and users, however, will be notified in the lab repository

1Responsive design, http://en.wikipedia.org/wiki/Responsive_web_design
2Twitter Bootstrap, http://getbootstrap.com
3CSS3 media queries, http://www.w3.org/TR/css3-mediaqueries/
4JQuery UI, http://jqueryui.com
5JQuery UI Bootstrap, http://addyosmani.github.io/jquery-ui-bootstrap/

Go-Lab 317601 36 of 70

http://en.wikipedia.org/wiki/Responsive_web_design
http://getbootstrap.com
http://www.w3.org/TR/css3-mediaqueries/
http://jqueryui.com
http://addyosmani.github.io/jquery-ui-bootstrap/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

that the specific widget might not be mobile friendly or even incompatible with
mobile.

In the future, we will further adapt these mobile requirements and continue to
investigate mobile technologies to ensure that Go-Lab supports state of the art
mobile devices.

Go-Lab 317601 37 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

5 Conclusion
This deliverable has described the specifications of the Go-Lab portal and the
app composer. The portal architecture described above aims to satisfy the re-
quirements and design principles of the Go-Lab portal. Each of the components
in the architecture handles a well-defined coherent set of tasks, which fulfils the
‘separation of concerns’ design objective. Through well-defined interfaces and
metadata specifications, we enable a loosely coupled architecture with high co-
hesion. The portal architecture follows the subsetability design principle and
thus allows an iterative and incremental development. Moreover, this enables
early deployment in real-life settings, which will be exploited for participatory
design evaluations. Furthermore, a first version of a few of the components
of the Go-Lab portal are already available. The lab repository is available at
http://www.golabz.eu and the ILS platform at http://graasp.epfl.ch.

One of the main requirements has been achieved, i.e., to provide a common,
ubiquitously accessible inquiry learning environment without any installation
hassle. Various design decisions contribute to this. First, the smart device spec-
ification and smart gateway for online labs empower interoperability between
any lab and the ILS platform. Second, the Go-Lab portal provides a seamless
integration between a repository of labs and an ILS. The integration is supported
by the well-defined interfaces and metadata specifications to exchange data.

In the second part of this deliverable, we have presented the app composer, its
requirements, the current mockups and future implementation plans. The mock-
ups were used as a tool to gather requirements and discuss ideas internally in
the project. In the near future, we want to check these ideas with teachers in
participatory design sessions to assess our ideas and validate whether teach-
ers need such tools, whether the proposed designs are usable and especially
whether the builder module or the expert mode of the app composer is some-
thing that teachers are willing to use. Based on these participatory design and
usability results we will adjust our requirements and designs. For instance, if
only teachers with a background in programming are willing to create their own
apps with the expert mode, they might be more efficient with a more expert inte-
grated developement environment (IDE) than with a beginner-friendly IDE. The
results and the updated specifications will be described in deliverable D5.6 in
M36.

Go-Lab 317601 38 of 70

http://www.golabz.eu
http://graasp.epfl.ch

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

6 Appendix A: Lab metadata
This appendix describes the efforts of the cross-workpackage metadata discus-
sions and the current version of the Go-Lab metadata specification. The Go-Lab
metadata specification is based on a combination and extension (fitting the Go-
Lab requirements) of the ROLE Ontology and the GOLC specification (T. Richter
& Zutin, 2012). Primarily, the Go-Lab metadata is implemented and used in the
lab repository of the Go-Lab Portal. It describes and indexes all learning content
stored in the repository: labs, apps, resources, and inquiry learning spaces.

6.1 The Metadata survey conducted in WP2
Work Package 2 has conducted a survey of the existing online labs (see Deliv-
erable D2.1). The related requirements analysis is one of the starting points for
the design and realisation of the Go-Lab portal. Work Package 2 also specifies
some useful taxonomies for the Go-Lab metadata. Examples are:

• Lab types: remote labs, virtual labs and data sets.

• Grade levels: primary education (10-12 years old), lower secondary ed-
ucation (12-15 years old), upper secondary education (15-18 years old),
higher education bachelor, higher education master.

• Inquiry learning phases: orientation, conceptualisation, investigation, con-
clusion & discussion.

6.2 Go-Lab metadata specification
To be able to describe an inquiry learning space, different components need to
be described, for instance labs and apps. It is hard to capture this in one meta-
data schema, therefore we have decided to offer a schema for each component.

In addition, we specify six groups of metadata types for various use purpose:

• General metadata describes the overall information such as titles or de-
scriptions and the content-specific metadata group, such as subject do-
main(s) and languages.

• Pedagogical metadata is metadata for educational purposes, such as grade
level. It is not inherent to the content, but for content management based
on pedagogical requirements.

• Organisational metadata is administrative metadata for content manage-
ment like access rights, licensing info, etc.

• Technical metadata describes technical information of the content, such
as URL. User-specific metadata is metadata related to users and includes
social metadata such as users’ rating and ranking.

In the remainder of this appendix, we present the preliminary metadata schema
that describes each component that is needed to describe an ILS. Furthermore,
we present the relationship of these schema with taxonomies, other compo-
nents, as well as a mapping to the related existed metadata standards.

Go-Lab 317601 39 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

6.2.1 Lab metadata

Labs, whether they are remote labs, virtual experiments, or data sets, contain
a large set of metadata. Teachers search labs for their courses based on the
metadata in the portal. We specify the following metadata with the reference
to the existing GOLC1 specification (T. Richter & Zutin, 2012) in Table 2. The
GOLC has created a comprehensive metadata set for labs.

This deliverable presents the lab metadata necessary for the portal. It contains
a subset of the lab metadata inventory presented in D2.1. Besides the afore-
mentioned metadata for labs, some other metadata maybe be further specified
in the future. For technical metadata, compatibility and additional software re-
quest could be useful to describe labs as well. Compatibility refers to mobile
device and browser compatibility (e.g., HTML5). For user-specific metadata,
teachers’ ICT competency level tells school teachers whether it requires a lot of
ICT competency to operate an online lab, to design lessons and apps. Acces-
sibility describes the support to students with special needs. Social metadata
like rating will be included to rank the labs.

6.2.2 App metadata

Apps (in our case often OpenSocial gadgets) provide support for inquiry based
learning using online labs. Most of the apps will not be built by teachers. Never-
theless, the app composer will allow teachers to translate adapt and build apps.
There is few metadata standards to describe apps from the online lab commu-
nities. We have developed the metadata for apps based on the research results
of the previous EU IP project ROLE (Govaerts et al., 2011), as listed in Table 3.
This set of metadata is rich enough to cover the app categories we focus on
in Go-Lab, i.e., interfacing apps for remote labs, simulation apps (virtual labs),
analysis and visualisation apps for data sets, guidance apps, as well as links to
external resources.

6.2.3 Resource metadata

Additional resources besides apps and labs have versatile content types. Videos,
Images, text, eBooks, websites and any other kind of multimedia content con-
tribute to resources. Thus, their metadata is diverse. Such resources will be
embeded as content in ILS templates and dedicated apps, as well as lab meta-
data as URLs.

6.2.4 Inquiry learning space template (ILS) metadata

Inquiry learning space templates consist of at least one online lab and a bundle
of apps and resources to help teachers prepare and conduct lab-based school
courses for the school students. Since ILS templates make use of online labs,
their metadata is strongly based on the lab metadata. To support inquiry learn-
ing, ILS templates consist of different inquiry phases (see Section 2 and deliv-
erable D2.2). Each inquiry learning phase has the metadata title, ILS term, and
content. An ILS term is a standardised inquiry learning phase term. Teachers

1Global Online Laboratory Consortium (GOLC), http://www.online-lab.org/

Go-Lab 317601 40 of 70

http://www.online-lab.org/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

are able to edit the title of each inquiry learning phase. To enable apps to query
in which phase they are running, ILS terms keep these personalised inquiry
learning phase titles consistent, and also searchable in the portal. Each inquiry
learning phase consists further apps, labs, and resources.

In Graasp, teachers can further adapt and modify the inquiry learning spaces
and publish them back to the lab repository. So the ILS metadata will be updated
accordingly. The metadata set of ILS is listed in Table 5.

Similar to the lab metadata, big ideas, compatibility, additional software request,
teachers’ ICT competency level, accessibility and rating will be be further spec-
ified in the future. On the other hand, ILS templates could be further developed
and referenced to their previous versions. Thus, isBasedOn will be used to
show the evolution of the ILS templates.

6.2.5 Taxonomy

All learning content (labs, apps, resources, and inquiry learning space tem-
plates) share the taxonomies of the subject, grade level, language, level of dif-
ficulty, level of interaction, inquiry learning phase fields. This enables cross-
content search by metadata. In the lab repository, search for a certain subject
or grade level could deliver a set of results consisting of labs, apps, and inquiry
learning space templates. Work package 2 has already surveyed metadata tax-
onomies for some of these fields (see deliverable D2.1). Which taxonomies we
will finally adopt in the Go-Lab metadata specification is still under discussion
and will be further detailed in deliverable D5.6.

Go-Lab 317601 41 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

M
et

ad
at

a
gr

ou
ps

M
et

ad
at

a
Ta

xo
no

m
y

R
el

at
io

n
G

O
LC

el
em

en
t

G
en

er
al

La
b

tit
le

In
te

ra
ct

io
nP

ac
ka

ge
:T

itl
e

La
b

ow
ne

r
In

te
ra

ct
io

nP
ac

ka
ge

:R
ig

ht
sH

ol
de

r
La

b
de

sc
rip

tio
n

In
te

ra
ct

io
nP

ac
ka

ge
:D

es
cr

ip
tio

n
La

b
ca

te
go

ry
x

In
te

ra
ct

io
nP

ac
ka

ge
:in

te
ra

ct
io

nP
ac

ka
ge

Ty
pe

S
ta

tu
s

Li
ce

ns
e

x
R

ig
::L

ic
en

se
/

in
te

ra
ct

io
nP

ac
k-

ag
e:

:L
ic

en
se

La
ng

ua
ge

x
in

te
ra

ct
io

nP
ac

ka
ge

::l
an

gu
ag

e
/

le
s-

so
n:

la
ng

ua
ge

/a
ct

iv
ity

::l
an

gu
ag

e
K

ey
w

or
d

B
oo

ki
ng

re
qu

ire
d

sm
ar

td
ev

ic
e

R
ig

:b
oo

ki
ng

S
ys

te
m

U
R

L
C

on
ta

ct
de

ta
ils

R
ig

::r
ig

ht
sH

ol
de

r:
:N

am
e

Pe
da

go
gi

ca
l

G
ra

de
le

ve
l

x
B

ig
id

ea
s

S
ub

je
ct

do
m

ai
n

E
du

ca
tio

na
lo

bj
ec

tiv
e

ac
tiv

ity
::l

ea
rn

in
gO

bj
ec

tiv
e

/
le

s-
so

n:
:le

ar
ni

ng
O

bj
ec

tiv
e

In
qu

iry
le

ar
ni

ng
ph

as
e

x
Le

ve
lo

fd
iffi

cu
lty

x
Le

ve
lo

fi
nt

er
ac

tio
n

x
Te

ch
ni

ca
l

La
b

U
R

L

A
dd

iti
on

al
m

at
er

ia
ls

R
es

ou
rc

e
ty

pe
R

es
ou

rc
e

U
R

Ls
Le

ss
on

pl
an

S
up

po
rt

iv
e

A
pp

s
ap

ps

Ta
bl

e
2:

O
nl

in
e

la
b

m
et

ad
at

a

Go-Lab 317601 42 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Metadata groups Metadata Taxonomy ROLE Ontology

General

App title dcterms:title
App category x role:category
App description dcterms:description
App creator foaf:maker (foaf Person type)
Subject domain x

Padagogical Inquiry learning
phase

x

Organisational Contact details
License x

Technical
App URL dcterms:source
App functional-
ity

x role:functionality

App type x rdf:type

User-specific Lesson plan
Keyword

Table 3: App metadata

Metadata
groups

Metadata Example: Go-Lab Concept Mapper

General

App Title ’Go-Lab Concept Mapper’
App cate-
gory

’Plan and organise ; Collaborate and commu-
nicate; Explore and view’

App descrip-
tion

’A concept mapping tool to support learners in
various inquiry phases, e.g., Orientation and
Conceptualization.’

App creator ’Lars Bollen, UTwente, l.bollen@utwente.nl’
Subject do-
main

’n/a; domain independent’

Pedagogical Inquiry
Learning
phase

’Orientation; Conceptualization’

Organisational App licence ’free’
Contact de-
tails

’Lars Bollen; l.bollen@utwente.nl’

Technical
App URL ’http://go-lab.gw.utwente.nl/sources/

tools/conceptmap/src/main/webapp/
conceptmap0.6.html’

App func-
tionality

Modelling, Inquiry support

App type ’Open Social Widget’

User Specific Lesson plan //dynamic data
Keyword //dynamic data

Table 4: Metadata set of the app ’Go-Lab Concept Mapper’

Go-Lab 317601 43 of 70

http://go-lab.gw.utwente.nl/sources/tools/conceptmap/src/main/webapp/conceptmap0.6.html
http://go-lab.gw.utwente.nl/sources/tools/conceptmap/src/main/webapp/conceptmap0.6.html
http://go-lab.gw.utwente.nl/sources/tools/conceptmap/src/main/webapp/conceptmap0.6.html

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

M
et

ad
at

a
gr

ou
ps

M
et

ad
at

a
Ta

xo
no

m
y

R
el

at
io

n
G

O
LC

el
em

en
t

G
en

er
al

IL
S

tit
le

In
te

ra
ct

io
nP

ac
ka

ge
:T

itl
e

IL
S

ow
ne

r/c
re

at
or

In
te

ra
ct

io
nP

ac
ka

ge
:R

ig
ht

sH
ol

de
r

IL
S

de
sc

rip
tio

n
In

te
ra

ct
io

nP
ac

ka
ge

:D
es

cr
ip

tio
n

S
ub

je
ct

do
m

ai
n

x
in

te
ra

ct
io

nP
ac

ka
ge

::s
ci

en
tifi

cF
ie

ld
/

le
ss

on
:s

ci
en

tifi
cF

ie
ld

/
ac

tiv
-

ity
::s

ci
en

tifi
cF

ie
ld

La
ng

ua
ge

x
in

te
ra

ct
io

nP
ac

ka
ge

::l
an

gu
ag

e
/

le
s-

so
n:

la
ng

ua
ge

/a
ct

iv
ity

::l
an

gu
ag

e
A

dd
iti

on
al

su
pp

or
tiv

e
m

at
er

ia
ls

re
so

ur
ce

in
te

ra
ct

io
nP

ac
ka

ge
::s

up
po

rt
in

gM
at

er
ia

l
/R

ig
::s

up
po

rt
in

gM
at

er
ia

l
S

up
po

rt
iv

e
ap

p
ap

ps
U

se
d

la
bs

la
bs

P
ad

ag
og

ic
al

G
ra

de
le

ve
l

x
E

du
ca

tio
na

lo
bj

ec
tiv

e
ac

tiv
ity

::l
ea

rn
in

gO
bj

ec
tiv

e
/

le
s-

so
n:

:le
ar

ni
ng

O
bj

ec
tiv

e
In

qu
iry

le
ar

ni
ng

ph
as

e
x

Le
ve

lo
fd

iffi
cu

lty
x

O
rg

an
is

at
io

na
l

Li
ce

ns
e

x
R

ig
::L

ic
en

se
/

in
te

ra
ct

io
nP

ac
k-

ag
e:

:L
ic

en
se

Te
ch

ni
ca

l
La

b
U

R
L

Le
ve

lo
fi

nt
er

ac
tio

n
x

U
se

r-
sp

ec
ifi

c
Le

ss
on

pl
an

K
ey

w
or

d

Ta
bl

e
5:

In
qu

ir
y

le
ar

ni
ng

sp
ac

e
m

et
ad

at
a

Go-Lab 317601 44 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

7 Appendix B: Go-Lab portal UI functionality
This appendix presents the UI of the Go-Lab portal in more detail. Its goal
is to provide a walkthrough on how portal users can create, edit and reuse
inquiry learning spaces. Additionally, this appendix will also briefly present ideas
for future UI features. Both platforms of the portal and their interplay will be
discussed. Finally, we will present the demo inquiry learning spaces we have
created so far applying the current version of the portal.

7.1 The lab repository
The lab repository (see Section 2.5.2), available at http://golabz.eu/, enables
the storage of labs, apps and ILS templates and provides various features for
teachers to browse and find such labs, apps and ILS templates. This section will
highlight the currently implemented features and their implementation details
briefly. Since this is the first iteration of the lab repository, keep in mind that
many UI features and architecture interfaces are not yet implemented.

7.1.1 The currently implemented features of the lab repository.

Figure 18 illustrates the front page of the lab repository, where users start their
search for resources for their course. From that page they can access the main
currently implemented features. The top menu provides access to pages that
contain a list of all online labs (see Figure 19), a list of all apps (see Figure 20)
and a list of all shared ILS templates (see Figure 21)

Each content type stored in the lab repository, i.e., online labs, apps and ILS
templates, has its own listing page which is available through the top menu.
For instance, Figure 19, Figure 20 and Figure 21 illustrate the listing pages
for respectively online labs, apps and ILS templates. As one can see, faceted
search functionality is again provided. One thing should be pointed out: in the
UI we call the ILS templates ‘inquiry spaces’. We hope that this makes the
concept of ILS templates clearer to teachers and lab owners. Whether this is
really the case will be shown in future usability studies of the portal.

Each of the items in the listing pages described above can be selected, which
will lead the user to a detailed information page. Figure 22 shows an example
for an ILS template, ’Buoyancy Inquiry Learning Space’. In the right column of
Figure 22 one can see the export to Graasp functionality. By clicking on this
button the ILS template is instantiated in Graasp and teachers can re-use and
adapt the ILS to their specific needs in Graasp, which will be described in more
detail in the next section.

7.1.2 Future work on the lab repository

There is one caveat with regard to the ILS template export feature, currently the
user has to be logged into Graasp before attempting to export an ILS template.
In the near future we plan to implement a common identity between Graasp
and the lab repository, which will resolve this issue. Furthermore, we plan to
update the graphical design of the lab repository and add search features, as
well as user-friendly ways to add apps, online labs and ILS templates to the lab

Go-Lab 317601 45 of 70

http://golabz.eu/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 18: The front page of the lab repository.

Go-Lab 317601 46 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 19: The ‘Online labs’ page lists all online labs in the lab repository.

Go-Lab 317601 47 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 20: The ’Apps’ page lists all apps in the lab repository.

Go-Lab 317601 48 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 21: The ’Inquiry Spaces’ page lists all ILS templates in the lab
repository.

Go-Lab 317601 49 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 22: This is a detail page of an ILS template. The orange button on
the right provides import of the ILS template in Graasp.

Go-Lab 317601 50 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 23: A screenshot of the inquiry learning space that was created
from the ILS template in the lab repository shown in Graasp.

repository.

7.2 The inquiry learning platform (Graasp)
The inquiry learning space platform (see Section 2.5.2) is making use of the
Graasp platform, available at http://graasp.epfl.ch. Graasp provides an en-
vironment to author ILS by teachers and lab owners, and allows teachers to
share such ILS with their students who use Graasp to operate the online labs
and apply inquiry-based learning. This section will highlight the currently im-
plemented features and their implementation details briefly. We will continue to
explain the features of Graasp for authoring ILS and inquiry learning from where
we left off with the explanation of the lab repository.

7.2.1 The currently implemented features of inquiry learning platform.

To recapitulate, after clicking the orange ‘Create your own’ button in Figure 22,
an ILS is created in Graasp based on the ILS template we have selected in
the lab repository. Figure 23 shows the inquiry learning space in Graasp that
has been created based on the ‘Buoyancy Inquiry Learning Space’ ILS from
the lab repository. One can see that each subspace in this ILS corresponds
to one inquiry phase. Inside these spaces the apps and resources related to
the corresponding inquiry phase are stored. Furthermore, the description of
each inquiry phase space is used as guidelines for students. Teachers can edit
the ILS (e.g., change the space description, remove an inquiry phase space or
add apps) using regular Graasp features. Teachers can then share the ILS with
their students by clicking on the ‘Share’ button on the right of the space title
‘Buoyancy Inquiry Learning Space’. This opens up the modal dialogue seen in
Figure 24. The dialogue window provides a URL to the student mode of the

Go-Lab 317601 51 of 70

http://graasp.epfl.ch

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 24: A screenshot of the ‘Share’ dialog that provides a secret URL
and social media share buttons.

Figure 25: A screenshot of the ‘Login’ dialog of the student mode of the
ILS.

ILS, which can be shared with the students and a set of social media icons
for sharing the ILS. When the students browse to this URL, they are asked to
provide a nickname, as illustrated in Figure 25.

Once the student provides a nickname, she can access the ILS in the student
mode (see Figure 26). The students are actually not logged into Graasp and
therefore do not need a Graasp account. This mechanism allows teachers to
more quickly deploy an ILS in the classroom without asking each student to
create a Graasp account and ensure privacy (only the teacher knows who is
hiding behind a nickname). Additionally this allows for more anonymous user
tracking. From Figure 26, one can see that the inquiry phase spaces from the
regular Graasp view or teacher mode (see Figure 23) are represented here as
tabs. Furthermore, the description of the ILS is presented above the tabs and
the description provided in each inquiry phase space is provided under each
tab.

Go-Lab 317601 52 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 26: A screenshot of the student mode of the ILS.

Go-Lab 317601 53 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 27: Creating a new ILS in the teacher mode in Graasp.

Teachers can also create their ILS independently of the ILS templates available
on the lab repository. This can be done in the same way as creating a regu-
lar Graasp space and then clicking on the ‘This is an inquiry learning space’
checkbox, see Figure 27. This will create a space with by default the five inquiry
phases (proposed in D1.1) set. From this empty workspace, they can start con-
structing their vision.

7.2.2 Future work on the inquiry learning platform

One of the features we plan to implement next, would be the ILS export, where
an ILS created in Graasp can be exported to the lab repository as an ILS tem-
plate. One of the requirements for this is to have a common user identity be-
tween the lab repository and Graasp to determine the creator of the ILS tem-
plate. Visually the export feature could be implemented as a button on each
ILS page in Graasp. Once this button is clicked the ILS content and structure is
sent to the lab repository, where the teacher can describe the ILS with metadata
according to our metadata schema (see Appendix A).

7.3 Example inquiry learning spaces
By applying the current portal UI functionality described in the previous sections,
we have created a few ILS for demonstration purposes. Some of these ILS
have been used to present the Go-Lab project in conferences and participatory
design sessions with teachers. This section provides a list of these ILS and their
respective URLs. These spaces are live and subject to change. The scenarios
used for these ILS come from those applied in the mockups (see D1.1).

• Buoyancy lab: This lab uses the aquarium-based remote lab that allows
buoyancy experiments by controlling balls of various materials that can be
submerged in a fishtank.

– The teacher mode: https://graasp.epfl.ch/#item=space_4648

Go-Lab 317601 54 of 70

https://graasp.epfl.ch/#item=space_4648

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

– The student mode: https://graasp.epfl.ch/metawidget/1/8ce2e500\
f04254a531ae7a2f675623c471138dfc

• Interacting galaxy lab: This lab uses the Faulkes telescope remote lab that
allows the investigation of varying galactic morphologies.

– The teacher mode: https://graasp.epfl.ch/#item=space_4642

– The student mode: https://graasp.epfl.ch/metawidget/1/60a035be\
c69cc0d4194799eaeb0a3e9ad5fd2b48

• Hypatia lab: This lab uses the Hypatia visualisation tool and data sets of
the large hadron collider to determine the total momentum of all particles
that are tracked after a particle collision.

– The teacher mode: https://graasp.epfl.ch/#item=space_4634

– The student mode: https://graasp.epfl.ch/metawidget/1/88658671\
fff4cfe39b2febb78b481d47763ec94b

All these demo spaces are available in the Go-Lab Prototypes space in graasp,
https://graasp.epfl.ch/#url=Protos.

Go-Lab 317601 55 of 70

https://graasp.epfl.ch/metawidget/1/8ce2e500\f04254a531ae7a2f675623c471138dfc
https://graasp.epfl.ch/metawidget/1/8ce2e500\f04254a531ae7a2f675623c471138dfc
https://graasp.epfl.ch/#item=space_4642
https://graasp.epfl.ch/metawidget/1/60a035be\c69cc0d4194799eaeb0a3e9ad5fd2b48
https://graasp.epfl.ch/metawidget/1/60a035be\c69cc0d4194799eaeb0a3e9ad5fd2b48
https://graasp.epfl.ch/#item=space_4634
https://graasp.epfl.ch/metawidget/1/88658671\fff4cfe39b2febb78b481d47763ec94b
https://graasp.epfl.ch/metawidget/1/88658671\fff4cfe39b2febb78b481d47763ec94b
https://graasp.epfl.ch/#url=Protos

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

8 Appendix C: Graasp development
This appendix will highlight the changes made to the Graasp platform developed
in the framework of the ROLE IP since the start of the Go-Lab project (Novem-
ber, 2013). These changes were driven by Go-Lab requirements or to ensure
future growth, scalability and stability of Graasp.

Since the beginning of the Go-Lab project, we have started using GitHub1 to
source code versioning control and issue tracking. Related to the Graasp de-
velopment, there are three different repositories: the Graasp repository2, the
Graasp Shindig repository3, and Graasp gadgets repository. Up till now, we
have resolved 256 issues on Graasp4, 19 issues on the Graasp Shindig reposi-
tory5, and 16 issues on Graasp gadgets repository.

This appendix is structured as follows: first, the work on performance improve-
ments is discussed, after which the development infrastructure is presented.
Then, the development of activity tracking, OpenSocial and user management
is highlighted. Finally a section with smaller improvements and new features
concludes this appendix.

8.1 Performance improvements
The responsiveness and the scalability of Graasp has been improved to en-
able a better user experience and to provide a stable platform to build the
Go-Lab portal upon. To be able to do meaningful performance improvements,
the source code was analysed and profiled to identify performance bottlenecks.
Afterwards, critical parts have been removed, redesigned and reimplemented.
Two main metrics were used to measure the responsiveness: the average first
load time and the average transition time between spaces. For Graasp this is al-
most equal to the app server response time (see Figure 28). The measurements
were done with the help of the NewRelic web application monitoring tool6.

To achieve better responsiveness and scalability, the following improvements
have been made:

• Code Refactoring: A result of Graasp profiling was the discovery that
Graasp’s notification subsystem contained a performance bottleneck. In-
efficient code has been removed and part of it has been reimplemented.

Another performance-related issue was located in the network commu-
nication between the front-end (the presentation tier) and the back-end
(the logic tier) (see deliverable G5.2 for the technical documentation of
Graasp). The presentation tier and the logic tier communicate using JSON

1GitHub, https://github.com
2Graasp GitHub repository is private due to source code licensing restrictions.
3Graasp Shindig repository, https://github.com/react-epfl/shindig-react
4Graasp issues page, https://github.com/react-epfl/graasp/issues?page=1&state=

closed
5Graasp Shindig issues page, https://github.com/react-epfl/shindig-react/issues

?page=1&state=closed
6New Relic, http://newrelic.com/

Go-Lab 317601 56 of 70

https://github.com
https://github.com/react-epfl/shindig-react
https://github.com/react-epfl/graasp/issues?page=1&state=closed
https://github.com/react-epfl/graasp/issues?page=1&state=closed
https://github.com/react-epfl/shindig-react/issues?page=1&state=closed
https://github.com/react-epfl/shindig-react/issues?page=1&state=closed
http://newrelic.com/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

objects. The creation of these objects was inefficient, often due to redun-
dant JSON fields. Such fields were identified and removed. This enabled
a reduction in network traffic by a factor of 2 to 10 times providing an im-
portant responsiveness improvement.

• Loading members asynchronously: Members of a space are now loaded
asynchronously in a separate call, which prevents blocking the UI and
increases the responsiveness.

• Memcached caching: A two-level caching for item sequences has been
implemented in Graasp. When a user enters a space, first a general
sequence of items is cached per space without taking into account any
access control permissions. Afterwards, a sequence for a specific user
based on the user’s access control permissions is cached for each space.
The caching enables to load spaces without accessing the MySQL database
enabling high scalability.

• Image optimization and caching: By compressing the icons used in Graasp,
we were able to reduce their total size by 60%. Additionally, the web server
has been configured to force clients to cache images for longer time peri-
ods.

Overall, the changes resulted in the following improvements of the measured
metrics:

• The average first load time:. Initially, the first loading was taking on aver-
age 10-15 seconds. Now, the first load time takes 3.1 seconds on average.

• The average transition time:. Initially, making a transition from one space
to another was taking from 3 to 60 seconds (in some cases even more
depending on the number of items in the space, and the user). Now,
space transitions happen under 100 ms.

The current Graasp performance is presented in Figure 28. From the top chart,
one can see that at the moment the network loading (brown) is very low and that
the main time is spent on rendering the page (blue) and processing the DOM
tree (yellow). From the bottom chart one can see that memcached (the tiny dark
blue line on the top) is very efficient in serving requests and that most of the
time is spent on querying the database. If further performance improvements
become necessary, the page rendering and DOM processing should be further
improved as these are currently the most time-consuming.

8.2 Infrastructure improvements
To enable collaboration between the partners and guarantee high quality of the
software artefacts produced, the following infrastructure has been set up:

• GitHub version control repository: Originally, the Graasp source code was
hosted on a private Subversion repository. We migrated the source code to
GitHub and access is available to all technical partners (see the Appendix
of deliverable G5.2). All scripts and services (e.g., building, deployment)

Go-Lab 317601 57 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 28: Graasp performance as monitored by NewRelic in March 2013.

are adapted to GitHub as the version control system. Additionally, the
features of GitHub are used in the project for code review.

• GitHub issue tracker: To track issues related to the development of Graasp,
the GitHub issue tracker is used.

• Jenkins continuous integration server: The Jenkins server7 is used for
continuous integration. The continuous integration server is configured as
such, that when new code is merged into the source code on Github, an
updated version of Graasp gets automatically deployed to the test server8.
We plan to integrate automated tests into the continuous integration to
ensure high software quality.

• New Relic Web Application Monitoring: Through the use of the NewRelic
web application monitoring tool, we are able to observe the performance
of Graasp almost in real time, and react on and analyse issues at the time
they occur.

• Pingdom uptime monitoring: By using the Pingdom service9, Graasp team
members will receive a notification when the Graasp server is down in

7Jenkins, http://jenkins-ci.org/
8The Graasp test server, http://reacttest.epfl.ch/
9Pingdom, https://www.pingdom.com/

Go-Lab 317601 58 of 70

http://jenkins-ci.org/
http://reacttest.epfl.ch/
https://www.pingdom.com/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

order to react fast. Note that in recent months, Graasp’s uptime has been
close to 100%.

• HipChat integration with the Graasp development infrastructure: HipChat10

is a hosted group chat and instant messaging service for teams. It allows
real-time collaboration and saves conversation histories. We have inte-
grated HipChat with other components of our infrastructure (e.g., GitHub,
NewRelic & Capistrano). Through HipChat we provide a communication
and awareness channel on the project development.

• User feedback mechanism: We have set up UserVoice service11 to gather
feedback from Graasp users. Every page has a Feedback button on the
left, that allows user to leave their opinions or suggestions.

• Bundler for dependency management: We have moved to Bundler12 for
dependency management in Graasp. Now deploying Graasp to a server
or setting it up on a developer’s computer is much more convenient and
takes much less time.

• Maintenance scripts: A set of Graasp database administration scripts has
been developed, e.g., for fixing dangling links and regenerating sequences
of items in a space. These scripts enable the swift execution of laborious
maintenance tasks.

8.3 Activity Tracking
.

To support learning analytics, user action tracking has been implemented in
Graasp. We have decided to use the ActivityStreams specification13 to repre-
sent data about user activities in the Go-Lab project (for more information on
learning analytics specifications, see D4.2). The ActivityStreams specification
provides a vocabulary list of verbs to track actions of users14. Currently, the fol-
lowing user actions are tracked in Graasp (note that an actor is a Graasp user
in this case):

• Add: An actor has added an item to a space.

• Update: An actor has modified an item.

• Invite: An actor has invited another actor into a space.

• Access: An actor has opened a space or a resource or launched an appli-
cation.

• Join: An actor has joined a space.

• Remove: An actor has removed an object from a space.

10HipChat, http://www.hipchat.com
11UserVoice, https://www.uservoice.com/
12Bundler, http://gembundler.com/
13The ActivityStreams specification, http://activitystrea.ms
14The ActivityStreams verbs, http://activitystrea.ms/registry/verbs/

Go-Lab 317601 59 of 70

http://www.hipchat.com
https://www.uservoice.com/
http://gembundler.com/
http://activitystrea.ms
http://activitystrea.ms/registry/verbs/

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

• Delete: An actor has deleted an item (space, resource, widget).

• Access: An actor has opened a space or a resource or launched an appli-
cation.

We have implemented the ActivityStreams API in Graasp, which allows external
services, when properly authenticated, to query activities stored in Graasp and
to create new activities. The ActivityStreams API of Graasp itself was used
to implement the ActivityStreams API in Shindig (as part of OpenSocial 2.5)
to support OpenSocial widgets, that submit or query user activities in Graasp
(e.g., for learning analytics). Most of the implementation has been done directly
in the activity stream controller of Graasp, and the role of Shindig is mainly
to forward ActivityStreams REST requests to Graasp. Through redirecting the
Shindig APIs to the Graasp APIs, we aim to improve the maintainability and
development of these APIs.

Both GET and POST requests have been implemented :

• Get activities: It is possible to retrieve the activity stream of a given user in
any given space. The activities are retrieved as a collection of activityEn-
tries. Every activityEntry consists of a verb, as well as an actor, an object
and possibly a target (which are activityObjects). The standard OpenSo-
cial request parameters have been implemented and allow to filter and
paginate activities.

• Create an activity: Similarly, one can post a new activity to Graasp, by
specifying the structure and the content of the corresponding activityEntry
(verb, target, object, actor. . .).

Additional documentation about the ActivityStream implementation in Graasp
and Shindig can be found at https://github.com/react-epfl/shindig-react/
blob/activity_streams/open_social_api.md#activities-activity-streams.

We have developed and implemented a clear activity access policy:

• Every tracked action is shown in the activity stream with a few exceptions:
accesses are shown as aggregate data and add actions are shown only
to the actor when the space is the object.

• Activities inside a private space are shown only to the members of this
space.

• Activities involving a hidden item are shown only to the users who can see
it.

Based on the ActivityStreams API, available in Shindig, we have developed wid-
gets and a portable dashboard for basic learning analytics (Vozniuk et al., 2013),
shown in Figure 29.

8.4 OpenSocial 2.5
At the start of the Go-Lab project, Graasp used Apache Shindig 2.0 to render
OpenSocial gadgets. Apache Shindig 2.0 supports version 1.1 of the OpenSo-

Go-Lab 317601 60 of 70

https://github.com/react-epfl/shindig-react/blob/activity_streams/open_social_api.md#activities-activity-streams
https://github.com/react-epfl/shindig-react/blob/activity_streams/open_social_api.md#activities-activity-streams

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 29: A portable learning analytics dashboard based on ActivityS-
treams API.

cial specification.

Since Graasp relies heavily on the usage of spaces, the Space concept was pro-
posed to OpenSocial15. Currently, the Space extension is not in the OpenSocial
specification 2.5, however, it is on the roadmap of OpenSocial 3.016.

To be able to use the OpenSocial space APIs in Graasp, we extended Apache
Shindig 2.0 to support spaces.

Since the ActivityStreams APIs were not supported in OpenSocial 1.1, we de-
cided to upgrade the Apache Shindig to the newest version 2.5. This ver-
sion implements OpenSocial 2.5. The major changes17 from OpenSocial 1.1
to OpenSocial 2.5 are listed below:

• Activity Streams support

• Deprecated support for ATOM

• Simplified gadget format

• Embedded Experiences

• OAuth 2 support

• Common Container

• Person Service - update APIs
15The Space concept proposal, https://opensocial.atlassian.net/wiki/display/OSD/

Space+Proposal
16OpenSocial 3.0 roadmap, https://opensocial.atlassian.net/wiki/display/OSD/Spec+

Changes+-+v3.0
17Release notes of OpenSocial 2.0 and OpenSocial 2.5: http://blog.opensocial.org/2011/

08/announcing-release-of-opensocial-20.html, https://opensocial.atlassian
.net/wiki/display/OSD/Spec+Changes+-+v2.5.

Go-Lab 317601 61 of 70

https://opensocial.atlassian.net/wiki/display/OSD/Space+Proposal
https://opensocial.atlassian.net/wiki/display/OSD/Space+Proposal
https://opensocial.atlassian.net/wiki/display/OSD/Spec+Changes+-+v3.0
https://opensocial.atlassian.net/wiki/display/OSD/Spec+Changes+-+v3.0
http://blog.opensocial.org/2011/08/announcing-release-of-opensocial-20.html
http://blog.opensocial.org/2011/08/announcing-release-of-opensocial-20.html
https://opensocial.atlassian.net/wiki/display/OSD/Spec+Changes+-+v2.5
https://opensocial.atlassian.net/wiki/display/OSD/Spec+Changes+-+v2.5

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

• Additional group models: @followers/@following/@colleagues/@reports/@manager

To achieve this upgrade, we have forked the latest version of Apache Shindig
(namely 2.5 beta 6 at the time). Afterwards, we have migrated into this fork
the OpenSocial space extension patch and the database mapping that maps
OpenSocial database tables on to Graasp’s database. In total, there were more
than 20000 lines of code migrated. We tested and fixed many issues that ap-
peared during the migration process and now we have a stable version that im-
plements the same functionality that was available previously in Apache Shindig
2.0.

8.5 User Management
8.5.1 Login with Facebook & Google+

To simplify the sign-up procedure for users, we have implemented a social login
service that allows users to sign into Graasp using their existing accounts on
popular social networking services. Currently, Graasp supports signing up with
Facebook and Google+ accounts in addition to the regular email-based sign-
up. Other than speeding up the sign-up procedure, the profile and social graph
information obtained from the identity providers (Facebook or Google+) could
be used later to provide personalised content for users.

Figure 30 shows how the signup process with a social network login works. After
choosing to log in with Facebook or Google+, we ask the user’s permission to
access her profile information. Once the user grants the permission, she is
redirected to the Facebook or the Google+ login page (if she is not already
logged in to Facebook or Google+). Using her login information of Facebook or
Google+, the user can directly sign into Graasp.

To implement the social network login service, we make use of the OAuth stan-
dard for secure authorization. After the user grants Graasp the permission to
access her profile information, a session token is returned from Facebook or
Google+. Using the session token, Graasp makes API calls to Facebook or
Google+ on behalf of the user, and retrieves the profile information of the user
including email, name, picture, and so on. If the email already exists in Graasp,
the user automatically signs into Graasp with the existing account. Otherwise,
a new Graasp account is created for the user.

8.5.2 Anonymous login

As mentioned, Graasp provides an email-based or social network-based login
scheme, where the user logs in using her email and password or social network
credentials. To comply with the preliminary participatory design recommenda-
tion of easing the login procedure for students, we have implemented a new
mechanism that allows students to access Graasp spaces without providing
credentials.

Such an anonymous login could be applied in the following use case. A teacher
creates an inquiry learning space for her course and populates the space with
all the apps needed for the inquiry-based learning activities, such as hypothesis

Go-Lab 317601 62 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 30: Facebook and Google+ log in process

tools, simulators, and so on. Then the teacher shares the space through a
secret URL with her students, as shown in Figure 31. Once a student loads
the url, she is asked to enter her name to identify herself. A nickname can be
provided to preserve anonymity. After entering her name, the student can use
the apps in the space and her actions are saved in Graasp. Figure 32 illustrates
an inquiry learning space for an experiment on the collision of galaxies where
students can observe galaxies through telescopes, conduct simulations, and
upload their reports into the space.

From a technical point of view, when the teacher shares the space, an encrypted
url is generated using a hash value that contains information about the creation
time, the corresponding space, and the space creator. When the url is loaded,
a metawidget that consists of all the apps in the space is rendered. As the
teacher might need to monitor students’ interaction with the apps, each student
can be identified by the name entered by the student. Students’ names are
saved via cookies so that they do not need to enter their names every time they
load the page. Furthermore, students’ actions are saved through AppData for
further analytics. We are now working a scheme to identify contributions from
students using their nickname for retrieval in other sessions or as information
for the teacher.

8.6 Other new functionality
8.6.1 Google Docs integration

Graasp allows users to integrate Google Docs as a resource into a space. When
a user creates a new resource, she can select ‘Google Doc’ as resource type
and then specify the URL of the Google Doc or pick the appropriate Google
Doc from your Google Drive by clicking the upload button next to the url field as
shown in Figure 33.

The Google Doc then appears embedded in Graasp as shown in Figure 34.
Note that this integration is not limited to text documents, but includes all types

Go-Lab 317601 63 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 31: Sharing a space through an encrypted url in Graasp.

Figure 32: A learning space loaded as a metawidget.

of Google Docs, i.e., spreadsheets, drawings, presentations, etc.

8.6.2 Mobile Graasp apps

In order to be widely accessible and run smoothly on mobile devices, we are
planning to create a mobile-friendly version of Graasp accessible through a Web
app. However, as the most efficient way to reach mobile app users is through
centralize native app stores, such as Apple’s AppStore and Google’s Play Store,
we have developed hybrid mobile apps for Android and iOS and are currently
in a first testing phase. Hybrid apps are basically Web apps with a small native
wrapper. In our case it can be described as native apps with basically only a
Web view. Figure 35 shows the mobile version of Graasp running on iOS.

Go-Lab 317601 64 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

First, select Google Doc as Resource type Then, Specify the Google Doc URL

...or pick Google Doc from your Google Drive

Figure 33: Creating a Google Doc resource in Graasp

Figure 34: Viewing a Google Doc resource

8.6.3 File uploading app

In order to allow students to upload files such as reports into the inquiry learning
space, a file uploading app has been developed18. The screenshot of the app
18The file uploading app is available at http://graasp.epfl.ch/gadget/la/file_drop.xml

Go-Lab 317601 65 of 70

http://graasp.epfl.ch/gadget/la/file_drop.xml

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 35: Screenshots of the Graasp mobile app on iOS

is shown in Figure 36. The app allows students to drag and drop files from
Desktop and upload them into the space where the app is. The app also lists
the existing files in the space, and provides a download link for each file.

Figure 36: Screenshots of the file upload app

8.6.4 Security improvements

To enhance security of the Graasp platform we have enabled SSL encryption of
the communication channel between the user’s machine and the platform. We
also have established redirection of all HTTP requests to HTTPS to force usage
of the encrypted channel. In this way all users’ content is served in a secure
way.

Go-Lab 317601 66 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 37: “Spaces shared with me” pad provides a quick access to
spaces shared with them.

8.7 Usability improvements
We have gathered feedback from users concerning Graasp usability issues and
addressed the most important ones. For instance, often users were not able to
find a specific space that they are members of. Now we show all spaces that
a user is a member of on a dedicated pad named “Spaces shared with me” in
their profile page (see Figure 37), so it is easy to find a space.

Another issue was related to the visibility of the filter panel. As this panel was
hidden by default, users were not able to find it and perform filtering. Now the
panel is always visible in the space (see Figure 38) so it is easy to leave only
necessary items on the pad.

8.7.1 Other improvements

In this section, we list an incomplete set of other improvements that have been
achieved in Graasp. As mentioned in the introduction, over 250 issues have
been closed on GitHub since the start of the project. The complete list can be
found on GitHub at https://github.com/react-epfl/graasp/issues?page=1&state=
closed.

• Improvements in the relevancy ranking of search results: Relevant items
in the search results are ranked based on the total number of views they
have received.

• Portal and Inquiry Learning spaces: Two new type of space have been
implemented: (i) a portal space and (ii) an inquiry learning space. A portal

Go-Lab 317601 67 of 70

https://github.com/react-epfl/graasp/issues?page=1&state=closed
https://github.com/react-epfl/graasp/issues?page=1&state=closed

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

Figure 38: Always visible filter panel in Graasp.

space is a space that is not a part of user’s space hierarchy but is a sep-
arate item. It is targeting a group of users and, as such, it is not explicitly
linked to its creator. The inquiry learning space has been added to

• Notifications changes: Notifications were sent separately for various user
actions in spaces that a user was part of (e.g., when a resource is added
to a space). This resulted often in large quantities of emails sent to users,
which resulted in complaints. Based on this feedback we have turned off
email notifications for all events except comments.

• Fixed back and forward buttons for alias URLs: There are two types of
URLs in Graasp: (i) ordinary URLs (e.g., http://graasp.epfl.ch/#item=
space_2602) and (ii) alias URLs (e.g., http://graasp.epfl.ch/#url=GoLab).
Alias URLs were introduced for usability reasons: they are much easier to
remember. Graasp contained a bug in managing browser history when
navigating from pages with ordinary URLs to pages with alias URLs and
vice versa. Graasp, being a single-page web application, changes URL in
the address bar by calling unset and set function of the Prototype Xten-
sions library. Each of the calls puts an address to the browser’s history,
while in the case of Graasp, only the new address should be put. We have
extended the library with a new function unset_set, which adds only the
new address to the browser’s history.

• Upload file size increased to 100Mb: Users are now allowed to upload files
up to 100Mb to Graasp. The usability of the file upload has also improved:
an error message will be shown when the user tries to upload larger files
and more meaningful error messages are used when the file upload fails.

• Permission changes: Now a confirmation is required to join public spaces.

• Improved identity check: When an owner receives a request to accept
a new member, she can see the member’s email address to be able to
perform a basic identity check.

• Minor interface improvements: The notifications panel has been removed
due to its limited functionality, e.g., users were unable to mark the grow-

Go-Lab 317601 68 of 70

http://graasp.epfl.ch/#item=space_2602
http://graasp.epfl.ch/#item=space_2602
http://graasp.epfl.ch/#url=GoLab

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

ing number of notifications as read. Additionally, loading the notifications
panel containing many messages slowed down Graasp.

• Search improvements: We implemented the search query as a bag of
words and improved the performance of search. For example, the queries
“go,lab”, “gO LAB”, etc. should find appropriate results.

• Social sharing: Sharing of space URL via facebook, twitter and google+
has been added. The Open Graph protocol is supported.

References
Bogdanov, E., Limpens, F., Li, N., El Helou, S., Salzmann, C., & Gillet, D. (2012).

A social media platform in higher education. In Global engineering educa-
tion conference (educon), 2012 ieee (pp. 1–8).

Bohl, O., Scheuhase, J., Sengler, R., & Winand, U. (2002). The sharable content
object reference model (scorm) - a critical review. In Computers in educa-
tion, 2002. proceedings. international conference on (p. 950-951 vol.2).

Christian Maier, M. N. (2010). Lab2go: A repository to locate online laboratories.
International Journal of Online Engineering (iJOE), Vol 6(No. 1).

Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J. I.,
Chepegin, V., et al. (2012). End-user-oriented telco mashups: the
omelette approach. In Proceedings of the 21st international conference
companion on world wide web (pp. 235–238).

Dahrendorf, D., Dikke, D., & Faltin, N. (2012). Sharing personal learning envi-
ronments for widget based systems using a widget marketplace. In Pro-
ceedings of the ple conference 2012 in aveiro, portugal, july 11-13, 2012.
aveiro, portugal.

David Lowe, L. W. M. d. l. V., Steve Murray. (2009). Labshare: Towards a
national approach to laboratory sharing.

Garcia-Zubia, J., Ipina, D. Lopez-de, Orduna, P., & Hernandez-Jayo, U. (2006).
Experience with weblab-deusto. In Industrial electronics, 2006 ieee inter-
national symposium on (Vol. 4, p. 3190-3195).

Gillet, D., Jong, T. de, Sotirou, S., & Salzmann, C. (2013). Personalised Learn-
ing Spaces and Federated Online Labs for STEM Education at School:
Supporting Teacher Communities and Inquiry Learning. In Proceedings
of the 4th IEEE Global Engineering Education Conference (EDUCON) (pp.
769–773). IEEE.

Govaerts, S., Cao, Y., Vozniuk, A., Holzer, A. C., Garbi Zutin, D., San
Cristóbal Ruiz, E., et al. (2013). Towards an Online Lab Portal for Inquiry-
based STEM Learning at School. In The 12th International Conference on
Web-based Learning (ICWL 2013). Springer.

Govaerts, S., Verbert, K., Dahrendorf, D., Ullrich, C., Schmidt, M., Werkle,
M., et al. (2011, September). Towards Responsive Open Learning En-
vironments: the ROLE Interoperability framework. In C. Delgado Kloos,
D. Gillet, R. M. Crespo Garcia, F. Wild, & M. Wolpers (Eds.), Towards
ubiquitous learning - proceedings of 6th european conference of technol-
ogy enhanced learning, ec-tel 2011, (pp. 125–138). Springer. Available

Go-Lab 317601 69 of 70

Go-Lab D5.2 Specifications of the Go-Lab Portal and App Composer

from https://lirias.kuleuven.be/handle/123456789/319048
Green, S., Pearson, E., Gkatzidou, V., & Perrin, F. O. (2012). A community-

centred design approach for accessible rich internet applications (aria). In
Proceedings of the 26th annual bcs interaction specialist group conference
on people and computers (pp. 89–98).

Harward, V., Alamo, J. del, Lerman, S., Bailey, P., Carpenter, J., DeLong, K., et
al. (2008). The ilab shared architecture: A web services infrastructure to
build communities of internet accessible laboratories. Proceedings of the
IEEE , 96(6), 931-950.

NISO Press. (2004). Understanding Metadata. National Information Standards
Organization Press. Available from http://scholar.google.com/scholar
?hl=en&btnG=Search&q=intitle:Understanding+Metadata#2

Richter, T., Boehringer, D., & Jeschke, S. (2011). Lila: A european project
on networked experiments. In S. Jeschke, I. Isenhardt, & K. Henning
(Eds.), Automation, communication and cybernetics in science and en-
gineering 2009/2010 (p. 307-317). Springer Berlin Heidelberg. Available
from http://dx.doi.org/10.1007/978-3-642-16208-4_27

T. Richter, P. G., & Zutin, D. (2012). A standardized metadata set for annotation
of virtual and remote laboratories.

Turnitsa, C. (2005). Extending the levels of conceptual interoperability model.
IEEE CS Press.

Vogel, O., Arnold, I., Chughtai, A., & Kehrer, T. (2011). Software architecture -
a comprehensive framework and guide for practitioners. Springer.

Vozniuk, A., Govaerts, S., & Gillet, D. (2013). Towards portable learning analyt-
ics dashboards. In Proceedings of the 13th IEEE International Conference
on Advanced Learning Technologies.

Go-Lab 317601 70 of 70

https://lirias.kuleuven.be/handle/123456789/319048
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Understanding+Metadata#2
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Understanding+Metadata#2
http://dx.doi.org/10.1007/978-3-642-16208-4_27

	Introduction
	The Go-Lab portal
	Introduction & objectives
	Terminology
	Requirements of the Go-Lab portal
	User story
	Functional requirements analysis
	Non-functional requirements analysis

	State of the art
	The Go-Lab portal architecture
	Overall architecture
	Components and interface specification
	Portal interoperability

	Implementation of the Go-Lab portal
	The Lab Repository
	Inquiry learning space platform

	The app composer
	Introduction & objectives
	Requirements of the App composer
	User story
	Functional requirements analysis
	Non-functional requirements analysis

	The App Composer mockups
	The main window
	The translator
	The builder

	State of the art
	Integration with the Go-Lab portal
	Implementation of the App Composer
	Implementation overview
	App composer modules

	Mobile devices compatibility
	Conclusion
	Appendix A: Lab metadata
	The Metadata survey conducted in WP2
	Go-Lab metadata specification
	Lab metadata
	App metadata
	Resource metadata
	Inquiry learning space template (ILS) metadata
	Taxonomy

	Appendix B: Go-Lab portal UI functionality
	The lab repository
	The currently implemented features of the lab repository.
	Future work on the lab repository

	The inquiry learning platform (Graasp)
	The currently implemented features of inquiry learning platform.
	Future work on the inquiry learning platform

	Example inquiry learning spaces

	Appendix C: Graasp development
	Performance improvements
	Infrastructure improvements
	Activity Tracking
	OpenSocial 2.5
	User Management
	Login with Facebook & Google+
	Anonymous login

	Other new functionality
	Google Docs integration
	Mobile Graasp apps
	File uploading app
	Security improvements

	Usability improvements
	Other improvements

	References

