
Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

Deliverable D5.4

Releases of the Go-Lab Portal and the
App Composer – Initial

Editor Adrian Holzer (EPFL)
Date 24th October, 2014
Dissemination Level Internal
Status Draft

c©2014, Go-Lab consortium

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Go-Lab 317601 2 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

The Go-Lab Consortium

Beneficiary
Number

Beneficiary Name Beneficiary
short
name

Country

1 University Twente UT The Nether-
lands

2 Ellinogermaniki Agogi Scholi
Panagea Savva AE

EA Greece

3 École Polytechnique Fédérale de
Lausanne

EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Edu-
cación a Distancia

UNED Spain

8 University of Leicester ULEIC United King-
dom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technol-
ogy Hellas

CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten -
Gemeinnützige Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear

Research
CERN Switzerland

16 European Space Agency ESA France

17 University of South Wales USW United King-
dom

18 Institute of Accelerating Systems
and Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab 317601 3 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Contributors

Name Institution
Adrian Holzer, Sten Govaerts, Andrii Vozniuk, Wissam
Halimi, Maria Jesus Rodriguez Triana, Aubry Cholleton,
Denis Gillet

EPFL

Yiwei Cao, Nils Faltin IMC
Pablo Orduña, Luis Rodríguez UDEUSTO

Panagiotis Zervas, Alexandros Trichos CERTH

Legal Notices
The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which
may be made of the information contained therein.

Go-Lab 317601 4 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Executive Summary
This deliverable presents the initial release of the Go-Lab portal and the app
composer following the specifications presented in D5.2. We first present the
features of the Lab Repository, then we discuss the ILS Platform before we
introduce the App Composer.

The main requirements in D5.2 focused on the management of ILS, Labs and
Apps. For instance finding them on the Lab Repository, potentially modifying
them and using them in the ILS Platform and publishing them on the Lab Repos-
itory. Further requirements focus on the community, allowing to share apps and
ILS, provide social features and ensure usability, privacy and facilitated access.

The features of the Go-Lab Portal and the App Composer delivered in this initial
release are the result of the ongoing collaboration between pedagogical require-
ments expressed by WP1 (see D1.1 for more details) as well as participatory
design sessions and evaluation results provided by WP3 (see D3.1 and D3.2 for
more details) and work on the lab metadata in collaboration with WP2 (see D2.1
and D2.2 for more details). Together these features provide a first fit to almost
all elicited requirements, with the exception of recommendations for labs, apps
and ILS in the Lab Repository and the ILS Platform, as well as the App Com-
poser integration with the Go-Lab portal. However, some features only include
basic functionality and need to be extended for the final release.

We are currently working on the open features and are maturing some other
features. We will continue to build on cross work package inputs to further refine
the existing features. The next iteration of the personalisation features will be
presented in D5.5 at M32 and the next iteration on the Go-Lab Portal and the
App Composer will be released in D5.6 at M36.

Go-Lab 317601 5 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Table of Contents

1 Introduction 9

2 The Lab Repository 10
2.1 Introduction . 10

2.1.1 Facts and numbers: . 10
2.1.2 Terms . 10

2.2 Architecture . 11
2.2.1 User interface design . 12
2.2.2 Implementation of the Portal Interoperability 13
2.2.3 The Drupal content management system 16
2.2.4 Technical server set-up and back-up 16
2.2.5 Responsive design . 17

2.3 Requirement fit . 17
2.3.1 Publishing Labs . 17
2.3.2 Creating ILS . 19
2.3.3 Publishing ILS . 19
2.3.4 Supporting Apps . 20
2.3.5 Supporting Learning Scenarios 20
2.3.6 Searching labs, apps & ILS. 21
2.3.7 Social features . 23
2.3.8 Tracking user activities . 24

3 The ILS Platform 25
3.1 Introduction . 25

3.1.1 General Concepts . 25
3.2 ILS Platform Architecture . 28

3.2.1 Graasp . 28
3.2.2 Application Container . 29
3.2.3 ILS Standalone View . 29

3.3 Requirement fit . 30
3.3.1 Creating ILS . 30
3.3.2 Modifying ILS . 31
3.3.3 Publishing ILS . 31
3.3.4 Using ILS . 31
3.3.5 Supporting guidance apps 32
3.3.6 Supporting learning scenarios. 32
3.3.7 User management. 32
3.3.8 Social features. 33
3.3.9 Tracking user activities. 33
3.3.10 Non-functional requirements analysis 33

4 The App Composer 36
4.1 Introduction . 36

4.1.1 The translator . 36
4.1.2 The adaptor . 36

Go-Lab 317601 6 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

4.2 Architecture . 37
4.2.1 General Overview . 37
4.2.2 Translator’s ILS platform Integration 37

4.3 Requirement fit . 38
4.3.1 Different languages . 38
4.3.2 Languages for different target groups 38
4.3.3 Adaptable app listing . 40
4.3.4 Adapting apps . 41
4.3.5 Publishing apps . 41
4.3.6 Portal integration . 41
4.3.7 Draft support . 41
4.3.8 Sharing apps . 42
4.3.9 Authentication . 43

5 Conclusion and outlook 44
References . 44

Go-Lab 317601 7 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

List of Figures

1 The Lab Repository home page 11
2 Morville’s UX honeycomb model 12
3 Survey results of Go-Lab Summer School 2014 - teachers’ im-

pression on Go-Lab Lab Repository 14
4 A screenshot of a big ideas catalogue in Golabz 14
5 An online labs associated to several Big Ideas 15
6 Structured lab metadata input form 16
7 A virtual lab published in the Go-Lab Portal 17
8 The metadata data lab screenshots 18
9 An example of a lab’s subject domains 18
10 The Sharing tab of an ILS page on the ILS Platform with the but-

ton to Publish inquiry spaces . 19
11 The ILS metadata form on the Lab Repository. 20
12 An app page in the Go-Lab Portal 21
13 The inquiry space in the portal 22
14 The ILS catalogue in the Go-Lab Portal 23
15 The social comment box in the Go-Lab Portal 24

16 ILS in Graasp . 25
17 Space information in Graasp . 26
18 ILS Standalone View . 27
19 The ILS Platform architecture . 28
20 The ILS Standalone View on a tablet 30
21 The ILS Standalone View welcome screen 32
22 Graasp usefulness and usability study 34

23 General Overview: Integration . 37
24 Translation mirroring scheme . 38
25 Choosing the language to translate 39
26 Choosing a specific target group 39
27 Translator’s Edit Language screen 40
28 Adaptor’s App Selection screen 40
29 Adapting a Concept Mapper instance 41
30 Translator’s App Selection screen 42
31 User’s applications list . 42
32 Proposal Merging UI . 43

33 A summary of the requirement fit and future work 46

Go-Lab 317601 8 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

1 Introduction
The specifications for the Go-Lab portal and the App composer were elicited in
D5.2. The main product of this deliverable is the developed software. The ac-
companying text in this deliverable describes the software development related
to the initial release of the Go-Lab portal and the App Composer. This deliver-
able is structured as follows. First we describe the releases of both components
of the Go-Lab portal, i.e., the Lab Repository (Section 2) and the ILS platform
(Section 3). ILS stands for Inquiry Learning Space as introduced in previous
deliverables.

More specifically, Section 2 discusses the Lab-repository (http://golabz.eu)
by first presenting an overview, then detailing the software architecture and fi-
nally relating the Lab Repository features to the requirements elicited in 5.2.
Among the noticeable features, The Lab Repository now hosts 48 labs, 28 apps,
and 8 ILS. The lab repository also allows to publish ILS and reuse ILSs.

Section 3 presents the ILS Platform (http://graasp.eu) starting with an intro-
duction, then discussing the architecture and finally the requirement fit. Among
the noticeable features, it allows to manage ILS from the creation to publication
via exploitation. The ILS Platform has undergone an important interface and
architectural redesign.

Section 4 presents the App Composer (http://composer.golabz.eu) by first
giving an overview of its two modules, namely the Adaptor and the Translator.
Then their architecture and the requirement fits are presented. The Translator
allows to translate apps into any language and for each language a target group
(based on age) can be selected. The Adaptor allows to fine tune apps.

Finally, Section 5 summarizes the requirement fit and discusses the next steps.
For instance, the final release of personalisation features and inquiry learning
apps will be delivered in D5.5 at M32 and the final release of the Go-Lab Portal
and the App Composer will be delivered in D5.6 at M36.

Go-Lab 317601 9 of 46

http://golabz.eu
http://graasp.eu
http://composer.golabz.eu

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

2 The Lab Repository
The Lab Repository is available at http://www.golabz.eu/ and its source code
is available on a subversion repository.1

2.1 Introduction
The Lab Repository is a starting point for teachers that want to create an ILS
and it contains resources to build an ILS. The repository enables access to
online labs, apps and shared ILS created by other teachers. The first prototype
of the Lab Repository was launched before M18, which was linked to Go-Lab
project web site in April 2014. This first prototype was already described in an
appendix of D5.2. Through continuous development, this deliverable presents
a stable Lab Repository at M24.

Figure 1 shows the current landing page of the portal. The Lab Repository
has currently integrated all online labs selected by WP2 (see D2.1 and D2.2)
and some extra third-party labs to demonstrate a first integration with the Smart
Gateway and Smart Devices (see D4.1 and D4.3), e.g., PhET labs 2. With re-
gard to the apps, we have reviewed all apps (over 150 apps) from the ROLE
Widget Store3 from the previous EU IP project ROLE (Dahrendorf, Dikke, &
Faltin, 2012) and migrated the apps relevant for the Go-Lab context. This proto-
type of the Lab Repository also contains the ILS integration. ILS can be created
based on labs or shared ILS and can be shared from the ILS Platform to the
Lab Repository.

The remainder of this section gives an overview of the Lab Repository and its
integration with the ILS Platform, presents the Lab Repository architecture and
discuss its requirement fit with respect to D5.2.

2.1.1 Facts and numbers:

The statistics of the resources in the Go-Lab Portal as of September 30, 2014,
is summarised below.4

• Labs: 48 labs;

• Apps: 28 apps, among them over 10 apps are exported from the ROLE
Widget Store;

• ILS: 8 inquiry spaces including 5 full and 3 mini inquiry spaces;

• Big ideas: 8;

• Lab owners: ca. 55 lab owners.

2.1.2 Terms

Some terms have evolved since the publication of D5.2 to better fit the target
audience, namely teachers and students.

1http://svn.research.im-c.de/golab-labrepository/trunk/go-lab-repository
2http://phet.colorado.edu/
3http://www.role-widgetstore.eu/
4Statistics can be found at http://www.golabz.eu/about-go-lab-portal

Go-Lab 317601 10 of 46

http://www.golabz.eu/
http://svn.research.im-c.de/golab-labrepository/trunk/go-lab-repository
http://phet.colorado.edu/
http://www.role-widgetstore.eu/
http://www.golabz.eu/about-go-lab-portal

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 1. The Lab Repository home page

Golabz is the site name of the Lab Repository. It consists of three resources:
Online labs, or labs for short, include remote laboratories, virtual experiments,
and data sets. Apps are Web apps to help conduct inquiry learning activities.
Inquiry learning spaces, spaces or ILS for short, are structured containers for
labs and apps together with other instructional documents. Besides, the con-
cept of Big ideas is used to organise online labs. All online labs are associated
with certain big scientific ideas in order to be learnt with practical knowledge
contexts. These aforementioned terms appear in the Lab Repository menu to
structure the resources.

2.2 Architecture
This section details the technical implementation of the architecture. Detailed
functionality and implementation technologies are discussed in the next section.

Go-Lab 317601 11 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

2.2.1 User interface design

The user interface is designed to deliver a valuable platform, in order to reach
the final goal of an innovative inquiry learning platform for schools. To that
end, we employ Peter Morville’s user experience honeycomb (Morville, 2005)
to assess the user experience (UX) of the lab repository. Peter Morville models
seven UX factors derived from an information architecture model as depicted in
Figure 2.

Figure 2. Morville’s UX honeycomb model

Among them, the factor valuable in the middle could be considered as a top-
level goal which all design elements contribute to. We describe our measures
to different factors according to Morville’s UX model below.

Useful. The user interface gives users ideas and useful information about what
Golabz is. An example is users can easily attain the information what Golabz is
via reading the header images on the home page. Furthermore, the content on
the Lab Repository and its functionality (e.g., previewing apps and creating an
ILS based on lab or shared ILS) can be useful for teachers to build an ILS.

Usable. The user interface is easy to use and has a clear structure. The home
page is organised as a grid to host all labs and apps, while there is a lab cata-
logue, an app catalogue, and an ILS catalogue respectively. Furthermore, the
detail page of each lab, app, and ILS lists the informative metadata. In the fu-
ture, we have to really assess the usability of the Lab Repository through user
evaluations.

Findable. Obviously, finding resources is essential for the Lab Repository. Users
can search on the Lab Repository through different means. A faceted search is
integrated for labs and apps, which makes content search intuitive by a couple

Go-Lab 317601 12 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

of clicks. A search box is embedded the header of every page, which enables
keyword-based search. Furthermore, different explorative navigation mecha-
nisms are available. For instance, labs and shared ILS can be explored through
the use of the Big Ideas (see D2.2).

Desirable. We promote the integration of images on the Lab Repository, e.g.,
screenshots and logo photos of labs. Apps also have a preview field (the app
preview) to enable teachers to try out the lab on the lab repository to give an idea
of their purpose after integration in an ILS. Big ideas also have their representing
icons to attract users. Furthermore, when teachers share an ILS on the Lab
Repository, the Go-Lab consortium can award social badges to it to make it
more desirable for teachers to share their ILS (Note: currently, only the ‘Go-Lab
approved’ badge is used).

Credible. User communities are integrated via social commenting. Teacher
communities can review and rate the labs, apps, and ILS to improve the cred-
ibility of the lab repository. Furthermore, a social badge system can enable
users to identify high quality resources (see above).

Accessible. The platform is responsive to different screen sizes and is accessi-
ble via mobile devices. The images and metadata display fits mobile devices.
Note that not all lab and app previews can be displayed on mobile devices due
to size or technological limitations (e.g., Java applets).

User testing is proposed as an efficient means to improve user interface (Nielsen,
2012) and different elements of the honeycomb can be targetted in separate
evaluations. We have prepared surveys for different user groups. During the
Go-Lab Summer School in Marathon in July 2014, we conducted a desirabil-
ity testing study (Benedek & Miner, 2002) with 25 teachers. Each teacher was
able to select as many words as they like from a predefined list to express their
positive and negative impressions. Figure 3 shows the results of this study.

The most popular words to describe the Go-Lab Portal are Attractive, Accessi-
ble, Creative, Easy-to-use, Innovative, Organised, and Useful. This survey has
been embedded in the Lab Repository, so any user can participate.5

2.2.2 Implementation of the Portal Interoperability

This section discusses the implementation of the portal interoperability specified
in D5.2.

Lab interoperability

As specified in D5.2, lab interoperability is realised via compliance to Smart
Devices and the Smart Gateway (see D4.1 and D4.3). Enhanced lab interop-
erability contributes to a federation of online labs. To further federate labs, we
categorise them using the Big ideas (see Deliverable D2.2). Big ideas of sci-
ence can cluster different online labs even in different subject domains. Figure 4
shows a screenshot of four of the eight Big Ideas on the Lab Repository.6 Fig-

5The survey is available at http://www.golabz.eu/about-go-lab-portal.
6http://www.golabz.eu/big-ideas

Go-Lab 317601 13 of 46

http://www.golabz.eu/about-go-lab-portal
http://www.golabz.eu/big-ideas

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 3. Survey results of Go-Lab Summer School 2014 - teachers’ im-
pression on Go-Lab Lab Repository

ure 5 shows how these Big Ideas are connected to the labs.7 Each lab can be
related to more than one Big Idea.

Figure 4. A screenshot of a big ideas catalogue in Golabz

7http://www.golabz.eu/lab/electricity-lab

Go-Lab 317601 14 of 46

http://www.golabz.eu/lab/electricity-lab

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 5. An online labs associated to several Big Ideas

Metadata interoperability

Since the development of the Lab Repository started before WP2 had finished
the lab and ILS metadata, we started out with a limited set of metadata. Since
the initial D5.2 specification, Work Package 2 and the technical cluster have re-
fined the metadata scheme and conducted surveys with school teachers (see
D2.2). Accordingly, the survey results are reflected in the Lab Repository. The
metadata for labs, apps, and ILS are improved in order to describe those learn-
ing resources properly with consideration of teachers’ opinions on metadata.
These results and WP2 outcomes are gradually implemented in the Lab Repos-
itory.

For a better overview to input lab metadata, it is organised in a structured form
with five tabs: General, Educational, Technical, Screenshots, and Big Ideas as
depicted in Figure 6. Currently such lab metadata annotation is done by Go-Lab
partners and is not publicly available for external lab owners.

In this release, we have not decided yet on the exact metadata exchange format
we will adopt. One possibility is to extend the GOLC metadata schema (Richter,
Grube, & Zutin, 2012). The final implementation of the lab interoperability will
be described in D5.6.

Interface interoperability

For the interface interoperability, a RESTful service is developed in the Lab
Repository for other platforms to access and retrieve metadata. The CRUD
operations can be specified to resources. Thus, metadata can be created,
read, update, and deleted remotely if this functionality is needed. JSON and
XML are supported for requests and responses. These services can be used
by other Go-Lab and third party platforms and services, e.g., the Learning An-
alytics service (see Deliverable D4.2). For example, when this URL http://
www.golabz.eu/rest/node?parameters[type]=lab is called, the REST server
returns all labs with their basic information such as id and title in XML.

Go-Lab 317601 15 of 46

http://www.golabz.eu/rest/node?parameters[type]=lab
http://www.golabz.eu/rest/node?parameters[type]=lab

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 6. Structured lab metadata input form

2.2.3 The Drupal content management system

The Lab Repository is realised using Drupal 7,8 which is a content management
system supported by PHP, the Apache server, and MySQL database. Each
resource in the Lab Repository is handled as a node belonging to a content
type, i.e., the lab, app, ILS, and Big Idea content types. Each content type
is specified with its metadata attribute fields. Some content types may share
common metadata fields with different labels. For example, all labs, apps, and
ILSs share the field creator to store the information about lab owners and app
or ILS creators. In the back-end database, all this information is stored in the
same table, while it has the different labels in the front-end, according to the
content type it belongs to.

For the layout in Drupal 7, views are used to a great extent. Each content type
has two basic views: default and teaser. They are used to present the detail
page and the catalogue of labs, apps, or ILS. In addition, the homepage is also
another view of all nodes in grid.

2.2.4 Technical server set-up and back-up

Developer, staging and production servers are established for collaborative de-
velopment and a smooth launch of Golabz. The staging server (http://staging
.golabz.eu) is employed to show the Go-Lab consortium members the new fea-
tures of the Lab Repository. The new features are migrated to the productive
server after approval.

8https://www.drupal.org/

Go-Lab 317601 16 of 46

http://staging.golabz.eu
http://staging.golabz.eu
https://www.drupal.org/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

2.2.5 Responsive design

To support ubiquitous access to the Lab Repository, it is developed using re-
sponsive design to adapt the UI to the hardware specifications of different de-
vices (e.g., the UI adapts to the screen size of a tablet). The Lab Repository
uses the Foundation 59 framework, which supports responsive design and de-
velopment quickly. One of Foundation features, Grid, offers the default 12-
column Foundation grid. The 12 columns can be applied to display content
in small, medium, and large screen by giving an appropriate CSS class, e.g.,
class=“small-2 large-4” in HTML. Thus, the responsiveness of the UI is fulfilled
via using this predefined Foundation styling classes.

2.3 Requirement fit
Here we show how the Lab Repository fits the requirements elicited in D5.2.

2.3.1 Publishing Labs

The Lab Repository supports lab owners to publish their online labs with a se-
lective metadata set. Currently, the labs are added by Go-Lab partners through
Drupal’s node creation forms. We do not have a public form where external
lab owners can add their labs. However, in the near future we plan to integrate
the Google Form created by WP2 as a first step towards publishing labs by an
external lab owner. Figure 7 shows the Electricity virtual lab.

Figure 7. A virtual lab published in the Go-Lab Portal

9http://foundation.zurb.com/

Go-Lab 317601 17 of 46

http://foundation.zurb.com/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

The lab logo and the Big Ideas icons illustrate the lab. The brief metadata sets
are listed on the right side of the lab logo, while the comprehensive metadata
sets are placed on the lower part of the page, with screenshots at the end.
When each screenshot picture is clicked, a pop-up window shows the zoom-in
image with a navigator bar on the bottom as depicted in Figure 8. Thus, besides
text metadata, the Go-Lab Portal attempts to employ more images to build an
illustrative platform for a better visual impression.

Figure 8. The metadata data lab screenshots

The subject domain is expanded with a tree structure to display the relation-
ships among subject domains. Figure 9 illustrates the subject domain of the lab
Osmotic Power Lab.10

Figure 9. An example of a lab’s subject domains

10http://www.golabz.eu/lab/osmotic-power-lab

Go-Lab 317601 18 of 46

http://www.golabz.eu/lab/osmotic-power-lab

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

2.3.2 Creating ILS

From the Lab Repository, it is possible to either create a copy of an existing ILS
previously published by a teacher, or create a new ILS embedding a specific
lab. On each inquiry space page on the Lab Repository, the Create a copy
of this space button instantiates a copy of the ILS on the ILS Platform and
redirects the user to the newly created ILS on the ILS Platform (Graasp), which
users can then modify, exploit and possibly republish (see next section for more
details about the ILS Platform). On each lab page, the Create Inquiry Space
button connects to the ILS Platform where users will find a new empty ILS with
the selected lab in the Investigation phase (see the orange button under the lab
logo in Figure 7).

2.3.3 Publishing ILS

Teachers can share the ILS they have created with the teacher community on
the Lab Repository. Such a shared ILS can be reused by other teachers as
described above. To share an ILS a teacher has created on the ILS Platform,
she can click the Publish inquiry space button in the Share tab, see Figure 10.

Figure 10. The Sharing tab of an ILS page on the ILS Platform with the
button to Publish inquiry spaces

Once clicked on this button, the ILS data structure and some metadata avail-
able on the ILS Platform (e.g., user info and space info) are sent to the Lab
Repository. The teacher is then referred to an online form available on the Lab
Repository, see Figure 11. Here the teacher is asked to fill in metadata on the
ILS. However most of the metadata is pre-filled because most information can
be derived from Graasp and the metadata of the lab used in the ILS. We use
the lab metadata because we assume the metadata of the ILS will be highly
correlated, e.g., the subject domains of the lab are likely similar or identical to
the ILS metadata. The teacher can however edit all metadata in case the gen-
erated metadata is not correct. After editing, the form can be saved and the ILS
will be available on the Lab Repository.

Go-Lab 317601 19 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 11. The ILS metadata form on the Lab Repository.

2.3.4 Supporting Apps

The Lab Repository hosts inquiry learning apps as a main resource, besides
labs and ILSs. The app catalogue is accessible via the menu item app in the
top bar in Golabz and at http://golabz.eu/apps. Each app is also displayed
with their metadata including subject, app type, app creator, category, license,
source code, keyword, and description (see Figure 12). Besides a simple app
logo on the top, an app preview is implemented for users to test out the app be-
fore they make a decision to select it for their inquiry space. The app preview is
realised in an iFrame which renders the app’s source code using the Application
Container of the ILS Platform (see Section 3.2.2). Thus, users are able to play
with these apps before embedding them in an ILS.

2.3.5 Supporting Learning Scenarios

Learning scenarios demonstrate the practical use cases of the learning re-
sources in the lab repository. They were called lesson plans in D5.2 and changed
to learning scenarios based on feedback of the pedagogical cluster. They are
embodied as inquiry spaces. As the third main resources in the Lab Repository,
Inquiry Learning Spaces also have a simple catalogue with a list of full inquiry
spaces and mini inquiry spaces (see Figure 13). These inquiry spaces are eval-
uated from a pedagogical perspective by Work Package 1. Figure 13 displays
an ILS in the repository together with its metadata fields (e.g., grade level, sub-

Go-Lab 317601 20 of 46

http://golabz.eu/apps

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 12. An app page in the Go-Lab Portal

ject, and language) on the right side of the ILS logo image. More comprehen-
sive metadata including description and learning objectives are placed below
the logo. Screenshots can illustrate the ILS in Standalone View (i.e., the view
that students will typically access). The ILS consists of a set of inquiry learn-
ing phases which are display in an accordion view. Thus, by clicking different
inquiry learning phases, it opens a sub-frame to show their resources respec-
tively. For example, the teacher renamed the standard Investigation phase to
Experiement! and it contains the Splash lab.

2.3.6 Searching labs, apps & ILS.

With a variety of content in the lab repository, it is necessary to develop a search
mechanism. We have developed two main search approaches in the lab repos-
itory: faceted search and free-text search. Figure 14 shows the lab catalogue
after applying the faceted search filter on the right side. It consists of subjects,
grade levels, languages, interaction levels, difficulty levels, lab types and key-
words. Each term is clickable to apply the filtering mechanism. More terms can
be selected or cancelled by clicking the “(-)” in the front. And they can also be

Go-Lab 317601 21 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 13. The inquiry space in the portal

used in combination. The example in the figure shows the filter to list all online
labs whose subject domain is astronomy, for the grade levels of secondary edu-
cation in both English and French with a difficulty level of medium. The free-text
search input form is placed in the top bar and can be accessed from any page.
It returns a list of results which contain the searched terms. We have used the
Drupal Integrated Search Server to enable search. The search server makes
an index of all nodes in the repository. This search server returns appropriate
results with the current repository. With the further increase of the content, we
consider to employ Elastic Search11 to enhance the search results and speed
up the search processing.

11http://www.elasticsearch.org/

Go-Lab 317601 22 of 46

http://www.elasticsearch.org/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 14. The ILS catalogue in the Go-Lab Portal

2.3.7 Social features

In order to involve more users and motivate their interactions with the Go-Lab
repository, we have integrated two Web services AddThis12 and Disqus13 to
implement the features of social rating and social comments. The AddThis Web
service is integrated in two ways. First, the sharing sidebar is applied and a
side bar with Facebook like and Twitter etc. is displayed on each page. Second,
on the page of online labs and apps, the original sharing buttons are used to
show how many Facebook likes or Google plus that lab or app has received.
For social comments, the Lab Repository employs the Disqus Web service to
enable users to leave their comments to labs, apps, and ILS without the need
to log in on the Lab Repository. Users can quickly log in with their Google,
Facebook, Twitter, or Disqus account, and leave a comment as illustrated in
Figure 15. In addition, we have embedded social channel links in the footer.

12http://www.addthis.com/
13https://www.disqus.com/

Go-Lab 317601 23 of 46

http://www.addthis.com/
https://www.disqus.com/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 15. The social comment box in the Go-Lab Portal

2.3.8 Tracking user activities

Piwik and Google Analytics are both applied to check the Web traffic of the Go-
Lab Lab Repository. 14 Relevant statistics about the number of visits are directly
displayed on the Lab Repository. This tracking information will be exploited in
the future by the Learning Analytics service (see D4.1) and the recommender
engine (see D5.1).

14The Piwik server is set up at http://piwik.golabz.eu/

Go-Lab 317601 24 of 46

http://piwik.golabz.eu/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

3 The ILS Platform
Graasp, the ILS Platform, is accessible at http://graasp.eu/.

3.1 Introduction
Graasp is a social media platform designed to support the requirements elicited
for collaboration in online learning communities.For learning communities, it is
typical to collaborate in groups, collect information from different sources and
disseminate it to others. More broadly, Graasp supports many types of collab-
oration including information management. We present the main concepts of
Graasp and its architecture.

3.1.1 General Concepts

The main concepts of Graasp are illustrated in the user interface screenshot in
Figure 16.

Figure 16. ILS in Graasp

Spaces. A space is the central concept in Graasp. A space encapsulates the
context of a collaboration. A space in Graasp can be loosely compared to a
folder with associated permissions. A spaces s can include another space s′.
We use the family tree metaphor and say that s′ is a child of s and that s is the
parent of s′. Each space has a name, a description, a set of sub items, and an
associate space information. The space information includes a set of members
with permissions, associated discussion threads, an edit option for settings,
information about the activity in the space, and social sharing information. The
space information is gathered in the right panel of the user interface in tabs as
illustrated in Figure 17.

Navigation within a space tree is done through a top navigation component that
shows the tree structure. For each space, its siblings, its ancestors and their
siblings are shown.

Go-Lab 317601 25 of 46

http://graasp.eu/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 17. Space information in Graasp

Items. Each space acts as a container for items. Items can be of three main
types: (1) spaces , (2) resources (coming from the local disk and the cloud),
and (3) apps.

Members. Each space has a set of members. By default, when creating a
child of a space, members are inherited from with the same permissions. Also,
when adding a member to a space, this member gets by default automatically
added to all descendant spaces with the same permissions.

Permissions. Each member – an individual or a group – of a space has a
defined permission in this space from the set of permissions {owner, editor,
viewer}, where owners have more rights than editors, which have more rights
than viewers. Each space must have at least one owner. An owner of a space
is also an owner of all its descendants:

Visibility. Each space can be shared with others, either by setting its visibility
level to public, which makes it accessible to anyone on the Web, or by keeping
the space private allowing only the space members to view and work with the
space content. With the search functionality offered by Graasp, the content of
public spaces can be found by anyone. In the future, public items can be set
to unlisted so they do not show up in the Graasp search and are not indexed
by external search engines. Users can still access unlisted public items by their
URL. When a new item is created, it inherits the visibility level of the parent item,
but afterwards the level can be changed.

Go-Lab 317601 26 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Inquiry learning spaces. Graasp supports both simple spaces and inquiry
learning spaces (ILS). ILS are the typical spaces created and shared by teach-
ers through Graasp and Golabz. ILS differ from simple spaces in that they come
with 7 child spaces when they are created. These 7 spaces are the five inquiry
phases as sub spaces as well as an About and a Vault space. Furthermore
they can be shared as Standalone View through a secret URL and only require
a nickname to be accessed. Figure 18 depicts the Standalone View of an ILS.
The upper bar contains the title of the ILS – on the left – and the student’s nick-
name – on the right. The tabs represent the inquiry phases (orientation, concep-
tualization, investigation, conclusion and discussion) and, in the specific case of
the Orientation phase, this example contains a video and a concept mapper app
(more information about the ILS specifications can be found in D5.2).

Step 1
Look at the following video to learn about Archimedes' principle

You are now in the Orientation phase where you will gather and select information on
buoyancy.

Use the "Concept map" in order to point out what physical quantities
are involved and the connections between them.

Orientation Conceptualization Investigation Conclusion Discussion

Hello AliceWhy do things float or sink?

Step 2

Tools

Figure 18. ILS Standalone View

Finally, the toolbar at the bottom of the screen is displayed if the teacher has
added some apps to the space. This toolbar is always visible to the students
and offers immediate access to all of the tools that were added during the au-
thoring of the ILS. The design of the Standalone View is the result of participa-
tory design with WP1 (see D1.1) and WP3. For instance, the mapping of the
inquiry cycle to tabs, the internal structure of a phase (a unique scrollable page)
and the position of the toolbar are the results of the findings of D3.1.

Go-Lab 317601 27 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

3.2 ILS Platform Architecture
The overall ILS Platform architecture, illustrated in Figure 19, consists of three
main parts: (1) Graasp, used as a ILS editor, (2) the Application Container
rendering apps and (3) the ILS Standalone View implemented as a metawidget.

Student

Graasp
Back-End

Graasp APIs

Graasp
Requests

Graasp Front-end

MongoDB

OpenSocial
Request

Application Container

ILS Standalone View

Graasp GUI

Apache
Shindig

OpenSocial APIs

Teacher

F
ro

nt
-e

nd
B

ac
k-

en
d

Figure 19. The ILS Platform architecture

3.2.1 Graasp

The Graasp online system is a single page web application (SPA) using JavaScript
end-to-end. As such, it is composed of the front-end part, running in a browser
and the back-end part installed on a server.

The front-end is developed with the AngularJS1 framework. Thanks to the Angu-
larJS templates, only the required data updates are exchanged between client
and server instead of complete HTML pages. This saves bandwidth and de-
creases latency leading to a more responsive web page, which is particularly
important in places with limited Internet connection. In terms of the responsive-
ness of the user interface (UI), the web application is based on the Bootstrap
framework2, which allows to optimize and adapt the UI for tablets and mobile
phones. To ensure ease-of-use, the Graasp UI reuses familiar concepts from
existing desktop and web applications. For instance, Graasp allows uploading
both individual files and folders with a simple drag and drop action. Graasp is
able to aggregate resources both coming from the local computer (e.g., doc-
uments, pictures or videos) and coming from the web (e.g., YouTube videos,
SlideShare presentations). If the web page content can be recognized, Graasp
will create a resource with the embedded content. This resource can then be
viewed from within Graasp.

1https://angularjs.org/
2http://getbootstrap.com/

Go-Lab 317601 28 of 46

https://angularjs.org/
http://getbootstrap.com/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

On the back-end, a Node.js3 server is handling the business logic and the struc-
tured data is persisted in a MongoDB4 database. Uploaded binary content (e.g.,
PDFs, MS Office documents or video files) is stored on the server file system in
a folder hierarchy corresponding to the space hierarchy in Graasp. As soon as
a resource (a file or a web content) is uploaded, the text information is extracted
and indexed to facilitate full-text search. This process relies on the MongoDB
text indexes.5 The data exchange between the front-end and the back-end is
done by using JSON format via a RESTful API or WebSockets for real-time
update propagation (e.g., change of the space name).

3.2.2 Application Container

Graasp implements an OpenSocial 6 container which supports OpenSocial apps
(sometimes referred to as widgets or gadgets). Apps are then rendered in
Graasp by the corresponding implementation of Apache Shindig Server.7 Apps
are developed according the Gadgets XML Reference8 and can exchange data
with the Graasp database via the OpenSocial API (OSAPI). The supported APIs
are: People, Applications, Appdata, ActivityStreams, Spaces and Documents.9

This enables integration between Graasp and apps, since an app developer
can retrieve and save Graasp data related to for example: spaces, people and
applications. Information flows between Graasp and Shindig occur as follows:

1. The Graasp Front-end recognizes an app and sends a request to the Ap-
plication Container (OpenSocial Container) to render the app

2. The Application Container contacts the Apache Shindig Server via the
OpenSocial APIs and provides it with the code to render the app

3. Apache Shindig runs the app in the Application Container in the Graasp
Front-end and the app can access Graasp data via the OpenSocial APIs.

3.2.3 ILS Standalone View

The implementation results of the Standalone View are illustrated in the ILS
metawidget, which is an open OpenSocial application that communicates with
Shindig for the visualisation of the ILS. The ILS metawidget is made up by the
container of the ILS (an XML file), the component in charge of the visualisa-
tion (a JavaScript file), and the graphical elements (CSS files and images). The
Standalone View has been developed following a responsive design approach.
Accordingly we decided to use HTML5 that encompasses HTML, JavaScript,
CSS3 and HTML5-friendly media. We use the Twitter Bootstrap framework to
offer a consistent user experience across all devices and platforms, as it is illus-
trated in Figure 20.

3http://nodejs.org/
4http://www.mongodb.org/
5http://docs.mongodb.org/manual/core/index-text/
6http://opensocial.org/
7https://shindig.apache.org/
8https://developers.google.com/gadgets/docs/xml_reference
9Documentation on the use of the APIs can be found here: http://opensocial-resources

.googlecode.com/svn-history/r1393/spec/2.0/Social-Gadget.xml

Go-Lab 317601 29 of 46

http://nodejs.org/
http://www.mongodb.org/
http://docs.mongodb.org/manual/core/index-text/
http://opensocial.org/
https://shindig.apache.org/
https://developers.google.com/gadgets/docs/xml_reference
http://opensocial-resources.googlecode.com/svn-history/r1393/spec/2.0/Social-Gadget.xml
http://opensocial-resources.googlecode.com/svn-history/r1393/spec/2.0/Social-Gadget.xml

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Step 1
Look at the following video to learn about Archimedes' principle

You are now in the Orientation phase where you will gather and select information on
buoyancy.

Use the "Concept map" in order to point out what physical quantities
are involved and the connections between them.

Orientation Conceptualization Investigation Conclusion Discussion

Hello AliceWhy do things float or sink?

Step 2

Tools

Figure 20. The ILS Standalone View on a tablet

3.3 Requirement fit
Here we show how the ILS platform fits the requirements specified in D5.2

3.3.1 Creating ILS

Lab owners create ILS to demonstrate a lab and teachers create ILS for stu-
dents. ILS can be created from scratch in the ILS platform. To that end the user
presses the + button in the space and then pressed New Inquiry Space. This
creates a new ILS with the five predefined spaces of the inquiry cycle (orienta-
tion, conceptualisation, investigation, conclusion) as well as the Vault and the
About spaces. As described in D5.2, the five spaces of the inquiry cycle are
used to gather resources and apps that are displayed in the Standalone View.
The Vault and the About spaces are not displayed to students. The Vault space
is used as data repository for apps. For instance, the DropFile app stores the
files dropped in it in the Vault. Teachers can then typically go to the Vault to
see student reports. The About space is the place where teachers can store
tutorials, FAQs, and tips on how to best make use of their ILS.

Go-Lab 317601 30 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Teachers can then add items in each phase and add descriptions to each items.
The ILS platform provides a tile view and an expanded view. The tile view
gives an overview of the items in a space by showing only a thumbnail for each
item. In this view items can easily be re-ordered by drag-and-dropping them in
the desired place. The expanded view shows each item below the other with
its description. In this view teachers see the items as they are shown in the
Standalone View. To see the Standalone View, the teacher can go to the share
tab and press the Show Standalone View button in the Sharing tab as shown in
Figure 17.

3.3.2 Modifying ILS

Teachers adapt existing ILS. When an ILS is created from the Lab Repository,
it can be modified in the ILS Platform. For instance, teachers can organise the
inquiry cycle by reordering phases, removing or renaming some and adding
new ones. Furthermore, teachers can add or remove items in each phase and
change descriptions. Finally, the language of the Standalone View can be mod-
ified independently of the ILS language.

3.3.3 Publishing ILS

Teachers and lab owners publish their ILS to enable reuse. Once an ILS has
been created or modified in the ILS platform, it can be shared with other teach-
ers either by inviting them as members into the space, or by publishing it on
the Lab Repository. Inviting teachers as members of the ILS means that they
can potentially collaborate in the elaboration of the ILS. It also implies that stu-
dent data will be available to all invited teachers. This type of sharing is most
suited for a team of teachers from a same school working together. Publishing
an ILS on the Lab Repository implies that any other teacher who visits the Lab
Repository can create their own copy of the ILS and edit and use it indepen-
dently. In order to publish the ILS on Golabz, users must click the Publish on
Golabz button in the share tab. The data from the ILS is then transferred to the
Lab Repository and the teacher is asked to complete some metadata before
publishing the ILS publicly on the Lab Repository, see Section 2.3.3.

3.3.4 Using ILS

Teachers run activities using ILS. Students use ILS provided by teachers to
conduct experiments. As shown in Figure 17, the teacher can access the Stan-
dalone View by pressing the Show Standalone View button in the Sharing tab
and can share it with students using its secret URL. The student then simply
types a nickname to access it as shown in Figure 21. As students are not regis-
tered through Graasp, only a nickname is required for authentication rather than
a full username / password set. After they enter a valid nickname, the main ILS
is displayed in the Standalone View. The overall ILS layout consists of four main
elements: a top information bar, a main navigation bar, the ILS body content
and a bottom tool bar, as illustrated in Figure 18.

Go-Lab 317601 31 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 21. The ILS Standalone View welcome screen

3.3.5 Supporting guidance apps

Here we conjointly address the supporting apps and scaffolding requirements
presented in D5.2 which stated: Students are supported in their inquiry learning
through apps (e.g., a hypothesis app or online lab interfacing apps). Teachers
monitor student progress through learning analytics apps. Students receive as-
sistance from scaffolding apps (e.g., prompts and feedback) based on learning
analytics and teacher configurations. As mentioned above OpenSocial apps
can be added to any phase in the ILS (see D5.3 for more information about the
developed guidance apps). When AngeLA permits it (see Section 3.3.9), apps
in an ILS can access the recorded Activity Streams (either directly or through
the OpenSocial API and the Learning Analytics backend, see D4.2 for further
details), and they can change their behaviour based on them. This can be used
by app developers to provide students with real-time prompts and feedback.

3.3.6 Supporting learning scenarios.

Teachers create lesson plans for ILS. Students use lesson plans provided by the
teacher when studying in ILS. As mentioned above, ILS are the embodiment of
learning scenarios. The ILS platform supports their creation, modification and
exploitation.

3.3.7 User management.

To access all of the portal’s functionality, users log in only once. Several login
options are provided depending on the acceptable privacy level. Teachers log
into the ILS platform with their email addresses and a password. Students typi-
cally access the Standalone View of an ILS by only providing a nickname. Thus
the ILS Standalone View provides privacy-by-design since the system does not
record a formal identification for students. With nicknames a student can find

Go-Lab 317601 32 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

her work where she left it if she logs in again at a later time with the same
nickname. Furthermore, we have implemented a prototype of authorization be-
tween the Lab Repository and the ILS Platform, where the ILS Platform is an
identity provider that enables users to login with the ILS Platform account into
the repository. Currently, this mechanism using OAuth2 is not in production yet,
but it will enable teachers in the near future to effortlessly share ILS on Golabz
with their Graasp account. Additionally, this OAuth2 authorization mechanism
will also be used to log in users in the App Composer and Smart Gateway in the
future.

3.3.8 Social features.

Teachers and lab owners tag, comment and rate labs and ILS, and share them
on social networks. Members of an ILS can leave comments in the Discussion
tab of the space. Furthermore, they can share the Standalone View of an ILS
on Facebook and Google+ in the Sharing tab. Each space also has a rating
system that allows to assign a rating to any space in the ILS platform.

3.3.9 Tracking user activities.

The activities of portal users are tracked and used for learning analytics, recom-
mendation and scaffolding apps. The ILS platform records user action through
Activity Streams. The activities are displayed in the Activity tab in each space.
These activities can also be visualized using dashboard apps. We have pre-
sented some of them in D5.3 and are currently working on other apps to be
used in dashboards (see D4.4). Whereas actions of space members are al-
ways recorded, actions performed on the Standalone View are only recorded if
the AngeLA tracking agent is member of the spaces. More details about An-
geLA are presented in D4.2. We plan to provide recommendation of resources,
and apps to teachers at the ILS level.

3.3.10 Non-functional requirements analysis

The non-functional requirement include ubiquitous access, usability & data pri-
vacy, as well as, scalability & availability.

Ubiquitous access. The ILS platform is accessible online with any modern
browser. So schools do not need to spend resources on installing and admin-
istering software. To provide lab federation and to support a common ILS plat-
form, interoperability of the labs is essential (see D4.1). When targeting school
students, special attention to usability and data privacy (e.g., anonymizing the
tracked user activities) is needed.

Usability & data privacy. As mentioned, in terms of data privacy, we provide
partial anonymity-by-design for Students by only requiring a nickname when
they access an ILS Standalone View. Furthermore, privacy is further guaran-
teed by the fact that student traces are only recorded when the AngeLA tracking
agent is added as member to an ILS (see D4.3).

Go-Lab 317601 33 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

In terms of usability, the redesign of the ILS platform follows a user-centered de-
sign approach (Constantine & Lockwood, 1999) and based on the participatory
design activity outcomes documented in D3.1 and D3.2. For instance, following
the structure and the visibility principles, related components in Graasp were
grouped and clearly separated from others and unnecessary components are
hidden to avoid distracting users. Following the simplicity and the reuse prin-
ciples, adding and moving resources can now be done done simply through
drag and drop of documents and folders from the desktop into Graasp. Fur-
thermore, to find content a novel navigation component was designed and the
search mechanism was improved.

Additionally, we evaluated individual features to decide which ones were prob-
lematic. We conducted a study with 38 master students who had used Graasp
for an entire semester about the features that they thought were easy or hard to
use, and the ones they thought were useful or not. The results are summarised
in Figure 22. The top row shows features with a difficulty score mentioned at
least ten times as difficult to use. The middle row shows features mentioned be-
tween one and ten times as difficult to use. The bottom row shows features that
where never mentioned as difficult to use. The left column shows features with a
usefulness score, i.e., the number of useful mentions - the number of not useful
mentions, below -5. The central column shows features with a usefulness score
between -5 and 5 and the right column shows items with a usefulness score
above 5.

Figure 22. Graasp usefulness and usability study

Typically, one of the most important usability issues was the Clipboard concept
on which the GraaspIt aggregation tool is also based. In the redesign we re-
moved the Clipboard concept and have introduced a Move To dialogue to move
resources, which was also found to be difficult. Currently, cloud resources can
be added just by providing an URL and we are working on a mechanism to make

Go-Lab 317601 34 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

GraaspIt more user-friendly. Then we have redesigned the sign up and login in-
terfaces to mimic typical mainstream social media platforms such as Facebook
with which users are familiar. As users enjoy drag and dropping resources, we
have extended the feature to allow to drag and drop resources anywhere in the
space. As tags were not considered useful we have dropped this feature. We
will further refine the usability of the ILS platform based on future feedback from
Work Package 3. For more information, we refer to D3.2.

Scalability & availability We use Load Impact10 to test the scalability of the
service. We monitor the availability using pingdom11 so we get notified every
time one of our services goes down. Our uptime for graasp.epfl.ch for the last
year is 99.6% Most of the downtime was due to maintenance. We have had
probably 2-3 major downtimes (few hours) during the last year.

10http://loadimpact.com/
11https://pingdom.com

Go-Lab 317601 35 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

4 The App Composer
The App Composer is available at http://composer.golabz.eu/.

4.1 Introduction
The main goal of the App Composer Platform is to provide teachers with the
means to take an app that someone else has developed, and to customize
it to fit their needs and those of their students. Teachers do not necessarily
have technical knowledge or willingness to spend a significant amount of time
to customize these apps, so the App Composer must be easy to use and not
require programming skills.

Hereafter, we will describe the architecture of the App Composer and its two
modules, the translator module and the adaptor module. In D5.2, a builder
module was also described, but its usefulness was not demonstrated and was
thus not further pursued.

4.1.1 The translator

Often apps are not available in the student’s mother tongue. If they are, the
number of supported languages is generally low. This makes it particularly hard
to share apps and ILS across different countries, especially because the stu-
dents to who those apps and laboratories are oriented, are often young and do
not master foreign languages sufficiently.

To solve this issue, the Translator lets teachers take an existing app or labora-
tory, and publish the user interface translations easily to their students or to the
public at large. Thus, for instance, a French teacher with knowledge of English
could easily translate an app or laboratory originally in English to French for his
or her young French students.

To support different levels of language proficiency among students (e.g., stu-
dents in elementary school typically have a smaller vocabulary than last year
high school students), the Translator also supports specific translations for spe-
cific groups within the same language.

4.1.2 The adaptor

The purpose of the Adaptor is more general. The Adaptor will let teachers con-
figure an existing app or laboratory (which must have previously been prepared
for customization by its developer) for their students.

That is, starting with an existing app or laboratory, which its developer has cre-
ated as a template, teachers would be able to choose which subsets of the
content to show, to specify how to do so or to customize the experience in any
other way. This way, teachers can very easily create and publish a version of
that app or laboratory which fits exactly the content they wish to teach and the
specific circumstances of their students.

Go-Lab 317601 36 of 46

http://composer.golabz.eu/

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

4.2 Architecture
The App Composer is relies on the Python-based Flask microframework. This
fact influences other design choices. The App Composer is split into different
components. Some of these components, such as user management or storage
are generic, and to be expected in most web applications. Others, however,
are very specific to the App Composer. That is the case of the Composers
themselves; the Translator and the Adaptor.

The App Composer platform integrates with the ILS platform, and most users
will access the App Composer through the ILS platform. In the following sections
the most important architectural details will be described.

4.2.1 General Overview

Figure 23 shows a high-level view of the App Composer and how it fits within
the Go-Lab ecosystem.

Main DB
MySQL

Graasp

Student

App
Composer

Teacher

Developers

Secondary
DB MongoDB

Auth

Translations

Figure 23. General Overview: Integration

The most common use-case will be through Graasp, though the Platform can
also be accessed directly. It is also noteworthy that deployments consist of two
different databases. The MySQL one is internal to the App Composer, and
is meant to store all the information about translations and adaptations. The
MongoDB one is used for the communication of translations between the App
Composer and Graasp (or other external systems), and is less critical. This
scheme will be described in further detail in later sections.

4.2.2 Translator’s ILS platform Integration

One of the goals of the App Composer to integrate seamlessly with the ILS
platform (and potentially with other external systems). Through the ILS platform,
hundreds or even thousands of students should be able to access published
apps and their translations.

If the translations were held only by the App Composer platform, then essen-
tially for every user who accessed a translated App through the ILS platform,
a request to the App Composer would be made. This would result in a very
high load on the App Composer (which is not really meant for massive content
delivery) and it would harm both scalability and availability. To solve this issue,

Go-Lab 317601 37 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

the ILS platform and the App Composer are decoupled through a secondary
MongoDB-based database. That database can be hosted anywhere, and it mir-
rors the App translations. Thus, whenever the ILS platform needs to access
a translation, it can retrieve it directly from that MongoDB. This relationship is
depicted in Figure 23.

The way the translation mirroring system works is depicted in more detail in Fig-
ure 24. That figure shows that synchronization happens at two different stages.
First, whenever a change in a translation occurs, the App Composer platform
tries to synchronize it straightaway. Last, periodically, the whole repository of
translations is synchronized. This way, even if the MongoDB database were to
fail, be reset or be replaced, or if any other problem would occur, it would not be
long before it would be automatically filled with up-to-date translations again.

App Composer

Main DB
MySQL

Teacher

Developers

Secondary
DB MongoDB

Changes
(Immediate)

Translator

Main

Sync’er
Periodical

SyncChanges

Changes

Changes

Figure 24. Translation mirroring scheme

4.3 Requirement fit
Here we show how the App Composer fits the requirements specified in D5.2.

4.3.1 Different languages

To support Go-Lab in European schools, internationalisation of apps is required
(see deliverable D5.1). After choosing the app to translate, users are shown
the language selection screen, which is depicted in Figure 25. Here they can
choose the source language (from which language to translate) and the target
language (to which language to translate).

4.3.2 Languages for different target groups

Students targeted by Go-Lab range from 10 to 18 years, which means that we
have to deal with different language proficiency levels. Apps can be translated
to and from these target groups. As Figure 25 shows, there is a default ALL
group. However, users can also choose a more specific one, such as English for
Adolescents (14-18), as displayed in Figure 26. That language and target group
combination can then be translated normally, as if it was a different language.
This is displayed in Figure 27.

Go-Lab 317601 38 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 25. Choosing the language to translate

Figure 26. Choosing a specific target group

Go-Lab 317601 39 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 27. Translator’s Edit Language screen

4.3.3 Adaptable app listing

A selection of apps will be available for teachers as a basis for adaptation. Be-
cause an app needs to be prepared by the App Developers themselves before
they can be adapted, the list of adaptable apps is initially limited. However, it is
expected to increase greatly in the future. The adaptable app selection screen
can be seen in Figure 28.

Figure 28. Adaptor’s App Selection screen

Go-Lab 317601 40 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

4.3.4 Adapting apps

Users can configure a selection of existing apps with data or models specific to
their learning. Figure 29 shows the Adaptor’s edit view. The different options
and controls that appear depend directly on the app being adapted. The de-
velopers of that particular App must have previously prepared their app to be
adaptable. In this case, the app being adapted is the Concept Mapper tool,
created by the University of Twente.

Figure 29. Adapting a Concept Mapper instance

4.3.5 Publishing apps

Teachers can share the apps they have created or translated with the Go-Lab
community by publishing them on the lab repository.

4.3.6 Portal integration

The app composer communicates with the portal to allow teachers to search for
existing apps to translate and save apps to their ILS or lab repository. Figure 30
displays the App Selection screen. The list of apps to translate is provided
directly by the Go-Lab Portal (through an API). To make it easier for users to
find the app they want, a search feature is provided which can be used to filter
the list in real time.

4.3.7 Draft support

Often users will require several sessions working with previously saved versions
before finishing their applications. Figure 31 shows the application list of a user.
The application list contains those application instances which the current user
has begin translating or adapting. There can be several versions of the same
app, and users can resume or edit a previous translation or adaptation at any
time.

Go-Lab 317601 41 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 30. Translator’s App Selection screen

Figure 31. User’s applications list

4.3.8 Sharing apps

The app can be developed by a group of teachers using basic version control.
For a given application, identified by its URL, and for a given language, there
is an owner of that application and language, who acts as an editor. Other
teachers can provide their own translation and automatically propose the owner
to merge their suggestions. The owner can choose to accept proposals auto-
matically, or to review them manually and modify them freely before merging
them. The proposal merging user interface is depicted in Figure 32. Through
this UI, owners of the languages can review the proposals they receive and see
each proposed change. They can immediately observe which messages are
changed (those whose background is in red) and which are not (those whose
background is in green). They can also deny the whole proposal, or deny spe-
cific changes (by clicking on the dash or cross, on the right of a message), or
even edit the text of each message.

Go-Lab 317601 42 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 32. Proposal Merging UI

4.3.9 Authentication

To enable saving apps and version control, a user identity is needed. The portal
can provide this, so that users do not have to sign up for an account. Though
the App Composer supports standard login/password authentication most users
will actually authenticate through the ILS Platform. Currently, this single sign-
on scheme is loosely based on OAuth, but relies on a different, token-based,
ILS platform-specific system. In the future, the ILS Platform will be an OAuth2
provider and the App Composer will properly integrate with the OAuth2 authen-
tication mechanism.

Go-Lab 317601 43 of 46

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

5 Conclusion and outlook
In this deliverable we have presented the implementation work completed for the
initial release of the Go-Lab portal and the app composer. The requirements for
this initial release were specified in D5.2. We have described the features of the
Go-Lab portal and the app composer based on these requirements. However,
the main result of this deliverable is the software itself, which is available at
http://golabz.eu, http://graasp.eu and http://composer.golabz.eu.

Figure 33 summarises the requirement fit of this initial release and the fu-
ture refinements that are planned for the final release these components in
D5.6 (M36).

More specifically, we plan to release basic recommendations (as requested by
the reviewers) for labs, apps and ILS on the Lab Repository and the ILS plat-
form. A first prototype of people recommendations has been integrated in the
Lab Repository based on the Bartering Platform profiles (see D4.4). Further-
more we plan to continue our work with WP1 to refine ILS from a pedagogical
perspective and investigate how different learning scenarios can be supported
by the Go-Lab portal as well as our participatory design approach to creating
new guidance apps to populate the Lab Repository. Our collaboration with WP2
will result in new labs added to the Lab Repository and refinement of the im-
plemented metadata schemes on the Lab Repository. We will also continue to
take into account the findings of WP3 on the evaluation of the different plat-
forms described in this deliverable. This will allow to improve the adoption of
Go-Lab, which is a central aspect of the project. During next year we will also
further integrate the WP4 results in terms of learning analytics to provide more
fine-tuned guidance apps, furthermore their tasks on the Smart Device and the
Smart Gateway will allow to further make the Lab Repository accessible to lab
providers. Some features of the Lab Repository will be further extended such
as the publishing of ILS and labs, as well as advanced user management and
authorization.

The final version of the Portal and App Composer will be documented in Deliv-
erable D5.6 (M36) and afterwards in M48 the sustainable version of the Portal
and App Composer will be released (see D5.7).

References
Benedek, J., & Miner, T. (2002). Measuring desirability: New methods for eval-

uating desirability in a usability lab setting. Proceedings of Usability Pro-
fessionals Association, 8–12.

Constantine, L. L., & Lockwood, L. A. (1999). Software for use: a practical
guide to the models and methods of usage-centered design. Pearson
Education.

Dahrendorf, D., Dikke, D., & Faltin, N. (2012). Sharing personal learning envi-
ronments for widget based systems using a widget marketplace. In Pro-
ceedings of the ple conference 2012 in aveiro, portugal, july 11-13, 2012.
aveiro, portugal.

Morville, P. (2005). Ambient findability: What we find changes who we become.

Go-Lab 317601 44 of 46

http://golabz.eu
http://graasp.eu
http://composer.golabz.eu

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

O’Reilly Media, Inc.
Nielsen, J. (2012). Usability 101: Introduction to usability.

http://www.nngroup.com/articles/usability-101-introduction-to-usability/,
last accessed: 20 Oct.2014.

Richter, T., Grube, P., & Zutin, D. (2012). A standardized metadata set for
annotation of virtual and remote laboratories. In Proceedings of the 2012
ieee international symposium on multimedia (pp. 451–456). Washington,
DC, USA: IEEE Computer Society. Retrieved from http://dx.doi.org/
10.1109/ISM.2012.92 doi: 10.1109/ISM.2012.92

Go-Lab 317601 45 of 46

http://dx.doi.org/10.1109/ISM.2012.92
http://dx.doi.org/10.1109/ISM.2012.92

Go-Lab D5.4 Releases of the Go-Lab Portal and the App Composer – Initial

Figure 33. A summary of the requirement fit and future work

Go-Lab 317601 46 of 46

	Introduction
	The Lab Repository
	Introduction
	Facts and numbers:
	Terms

	Architecture
	User interface design
	Implementation of the Portal Interoperability
	The Drupal content management system
	Technical server set-up and back-up
	Responsive design

	Requirement fit
	Publishing Labs
	Creating ILS
	Publishing ILS
	Supporting Apps
	Supporting Learning Scenarios
	Searching labs, apps & ILS.
	Social features
	Tracking user activities

	The ILS Platform
	Introduction
	General Concepts

	ILS Platform Architecture
	Graasp
	Application Container
	ILS Standalone View

	Requirement fit
	Creating ILS
	Modifying ILS
	Publishing ILS
	Using ILS
	Supporting guidance apps
	Supporting learning scenarios.
	User management.
	Social features.
	Tracking user activities.
	Non-functional requirements analysis

	The App Composer
	Introduction
	The translator
	The adaptor

	Architecture
	General Overview
	Translator's ILS platform Integration

	Requirement fit
	Different languages
	Languages for different target groups
	Adaptable app listing
	Adapting apps
	Publishing apps
	Portal integration
	Draft support
	Sharing apps
	Authentication

	Conclusion and outlook
	References

