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Stating a hypothesis is one of the central processes in inquiry learning, and often forms

the starting point of the inquiry process. We designed, implemented, and evaluated

an automated parsing and feedback system that informed students about the quality

of hypotheses they had created in an online tool, the hypothesis scratchpad. In two

pilot studies in different domains (“supply and demand” from economics and “electrical

circuits” from physics) we determined the parser’s accuracy by comparing its judgments

with those of human experts. A satisfactory to high accuracy was reached. In the

main study (in the “electrical circuits” domain), students were assigned to one of two

conditions: no feedback (control) and automated feedback. We found that the subset

of students in the experimental condition who asked for automated feedback on their

hypotheses were much more likely to create a syntactically correct hypothesis than

students in either condition who did not ask for feedback.

Keywords: automated feedback, hypotheses, inquiry learning, context-free grammars, online learning

environment

INTRODUCTION

Active forms of learning are seen as key to acquiring deep conceptual knowledge, especially in
science domains (Hake, 1998; Freeman et al., 2014). One of the active forms of learning is inquiry
learning. Inquiry learning has been defined in many different ways with as its kernel that the
method starts from questions for which students need to find answers [see e.g., (Prince and
Felder, 2007)]. In the current work, we focus on one of the ways inquiry is used in instruction,
namely “learning science by doing science”: students are expected to form and test hypotheses
by performing experiments and analyzing data. In following an inquiry cycle, students learn both
science content and the scientific method. In this study, we focus on the practice of the scientific
method, and in particular on the creation of hypotheses.

Most models of inquiry-based learning encompass an orientation and conceptualization phase
that enables students to familiarize themselves with the topic of investigation. Common activities
during orientation are studying background information and conducting a few explorative
experiments with the equipment at hand. The intended outcome of these initial explorations is
the formation of theories and ideas, formalized in hypotheses (Pedaste et al., 2015). Hypotheses
are integral to the inquiry cycle: they direct students’ attention to specific aspects of the research
problem and, hence, facilitate experimental design and data interpretation (Klahr and Dunbar,
1988; Zimmerman, 2007). In a classic study, Tschirgi (1980) found that both children and adults
design more conclusive experiments when trying to test a hypothesis that contradicts prior
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evidence. Hypothesis testing also increases the amount of domain
knowledge students gain from an inquiry (Burns and Vollmeyer,
2002; Brod et al., 2018), which is probably due to the fact that
hypotheses, regardless of their specificity and truth value, provide
direction to students’ inquiry process (Lazonder et al., 2009).

The importance of hypothesizing nevertheless stands in
marked contrast with its occurrence in high school science
classes. Research has consistently shown that inquiry is a complex
process in which students make mistakes (Mulder et al., 2010).
Specifically, students of all ages have problems in formulating
hypotheses, particularly when they are unfamiliar with the topic
of inquiry (Gijlers and de Jong, 2005; Mulder et al., 2010), and
when experimental data is anomalous (Lazonder, 2014). As a
consequence, few students generate hypotheses on their own
account, and when they do, they often stick to a single hypothesis
that is known to be true (i.e., confirmation bias) or formulate
imprecise statements that cannot be tested in research. These
natural tendencies demonstrate that unguided inquiry learning
is likely to be ineffective (Mayer, 2004; Kirschner et al., 2006;
de Jong and Lazonder, 2014). However, guided inquiry learning
has been shown to compare favorably to both direct instruction
(D’Angelo et al., 2014) and unguided inquiry learning (Furtak
et al., 2012), and helps foster a deeper conceptual understanding
(Alfieri et al., 2011).

Inspired by these positive findings we set out to design
and evaluate a software scaffold that presented students with
automatically generated feedback on the quality of their
hypotheses.

THEORETICAL FRAMEWORK

Adaptive and Automated Scaffolding
Inquiry learning often takes place in virtual or remote
laboratories and, to be successful, should be supplemented with
guidance (de Jong and Lazonder, 2014). Furthermore, de Jong
and Lazonder (2014) postulated that different types of students
require different types of guidance. Recent work on differentiated
guidance lends credence to this argument, finding a moderating
effect of students’ age (Lazonder and Harmsen, 2016) and prior
knowledge (van Riesen et al., 2018) on learning activities and
knowledge gains. Moreover, Furtak et al. (2012) showed teacher-
led inquiry activities to be more effective than student-led
inquiry, implying that teachers are effective suppliers of guidance.
However, given that teachers’ time is an increasingly valuable
resource, several adaptive software agents have recently been
developed to support teachers on specific tasks and that adapt
the guidance to students’ characteristics. While Belland et al.
(2016) found no added effect of limited adaptive scaffolding over
static scaffolding, intelligent tutoring systems (Nye et al., 2014),
adaptive environments (Durlach and Ray, 2011; Vandewaetere
et al., 2011), and automated feedback (Gerard et al., 2015,
2016) have all shown promising results. The common-sense
conclusion appears to be that the more guidance is adapted
to the individual student, the better the guidance—and thus
the student—performs. Indeed, Pedaste et al. (2015) recently
identified the development of “virtual teacher assistants that

analyse and respond to individual learners to create meaningful
learning activities” as one of the main challenges in the field.

Although adaptive and automated elements are increasingly
common in online learning environments (e.g., Aleven et al.,
2010; Lukasenko et al., 2010; Vandewaetere et al., 2011; Gerard
et al., 2015, 2016; Ryoo and Linn, 2016), they have typically
been designed and implemented for a single learning activity in
a specific domain. The reason for this is simple; even adaptive
guidance for a single well-defined learning task generally requires
years of research and development. Data must be gathered
and coded, models have to be trained and fitted, appropriate
feedback has to be fine-tuned and a digital environment has to be
developed. Each of these steps involves the input of experts from
different fields; teachers, statisticians, educational researchers,
and computer scientists. As a result, scaffolds in multi-domain
environments such as Go-Lab (de Jong et al., 2014) and WISE
(Linn et al., 2003) generally do not adapt to the individual
student, nor can they automatically assess products or provide
context-sensitive feedback. The hypothesis scaffold we describe
and test in this paper aims to fill this gap.

We have been unable to find any existing literature on the
automated scoring of and feedback on free-text hypotheses. In
contrast, a variety of increasingly sophisticated natural language
processing (NLP) techniques have been employed for automated
essay scoring. However, the techniques applied to scoring essays
typically require a large amount of training data, and even when
training data is available they are unlikely to provide the level
of detail on the underlying structure of hypotheses required to
give meaningful feedback. Training data is not readily available
for hypotheses, and would be expensive to gather (Shermis and
Burstein, 2013).

Anjewierden et al. (2015) noted that the “language” of
hypotheses is a subset of natural language with a specific
structure. They suggested using a domain-specific list of variables
and categorical values (the lexicon), in conjunction with a
grammar of hypotheses. Together, the lexicon and grammar
could be used to create a hypothesis parses that is robust, and
can be adapted to different domains with relative ease. The
work reported here attempts to implement such a context-free
grammar.

Feedback
The informative tutoring feedback model [ITF, (Narciss, 2006,
2008)] distinguishes between internal feedback and external
feedback, and a wide variety of feedback types. Internal feedback
is provided by individual cognitive monitoring processes
(Ifenthaler, 2011), external feedback can be provided by for
example; teachers, peers, or automated scaffolds. Both types of
feedback may conflict with or reinforce an internal reference
value. Careful feedback design can help students regulate
their learning process, particularly when internal and external
feedback conflict (Narciss, 2008).

The function of feedback may be cognitive, meta-cognitive, or
motivational, and a distinction can be made between simple (e.g.,
knowledge of performance, correct result) and elaborated (e.g.,
knowledge about task constraints, mistakes, and concepts) forms
of feedback. These components broadly overlap with outcome,
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corrective and explanatory feedback types (e.g., Johnson and
Priest, 2014). In a second-order meta-analysis on the effects
of feedback, Hattie and Timperley (2007) prescribed that good
feedback should set clear goals (feed up), inform the student of
their progress (feed back), and provide steps to improve (feed
forward). Finally, immediate feedback has been shown to give
larger benefits than delayed feedback (Van der Kleij et al., 2015).

Research Goal and Context
This project is performed in the Go-Lab ecosystem (de Jong
et al., 2014). Go-Lab is an online environment where teachers
and authors can share online and remote laboratories (Labs)
and scaffolding applications (Apps). Apps and Labs can,
together with multimedia material, be combined to create
Inquiry Learning Spaces (ILS), which can also be shared on
the Go-Lab environment. Figure 1 shows a screenshot of a
typical ILS. This ILS is organized in six phases that follow
an inquiry cycle (in this case; Orientation, Conceptualization,
Investigation, Interpretation, Conclusion, and Discussion), and
can be navigated freely.

The hypothesis scratchpad app [Figure 2; (Bollen and Sikken,
2018)] is used to support students with hypothesis generation.
This study aimed to create an adaptive version of the
hypothesis scratchpad that can scaffold the individual student in
hypothesizing in any domain, with a minimum of set-up time for
teachers. This new version will need to (1) identify mistakes in
students’ hypotheses, and (2) provide students with appropriate
feedback to correct these mistakes. If the app achieves both of
these goals, it will be a considerable step toward “empowering
science teachers using technology-enhanced scaffolding to improve
inquiry learning” (Pedaste et al., 2015).

DESIGN

For this project the hypothesis scratchpad currently available
in Go-Lab has been extended. An automated feedback system
was developed that can identify flaws in students’ hypotheses
and provide tailored feedback that enables students to correct
their mistakes. The aim is to improve the quality of students’
hypotheses.

The following sections will (1) describe the main components
of hypotheses and the criteria used to assess them, (2) introduce
the process of parsing hypotheses and applying criteria, (3)
present the feedback given to students, and (4) formalize the
outcome measures and statistical analyses used.

Criteria
Quinn and George (1975) were the first to formally define a set
of criteria for evaluating hypotheses: (1) it makes sense; (2) it
is empirical, a (partial) scientific relation; (3) it is adequate, a
scientific relation between at least two variables; (4) it is precise—
a qualified and/or quantified relation; and (5) it states a test, an
explicit statement of a test. Subsequent research on hypothesis
generation has broadly followed the same criteria, or a subset
thereof. Van Joolingen and De Jong (1991, 1993) used a “syntax”
and a “precision” measure, that correspond roughly with the “it
makes sense” and “precise’ criteria of Quinn and George. Mulder

et al. (2010) used a “specificity” scale, using criteria comparable
to those of Quinn and George.

Based on the criteria used by Quinn and George, and the
measures used by Van Joolingen and de Jong, we developed a
set of criteria that could be implemented in automated feedback.
Table 1 lists these criteria, providing a short explanation
and examples from the electrical circuits domain for each
criterion. In the automated feedback, the first two criteria
are straightforward in that they rely on the presence of
certain words. The remaining criteria are established using a
context-free grammar parser, which is described in the next
section.

Parser
To detect mistakes, the automated system needs to interpret
hypotheses on the criteria listed inTable 1. Given the observation
that hypotheses are a relatively structured subset of natural
language (Anjewierden et al., 2015), we can define a context-free
grammar [CFG, (Chomsky, 1956)] that covers all well-structured
hypotheses.

CFGs can be used to define natural languages, and are ideally
suited to define heavily structured languages [e.g., programming
languages, (Chomsky, 1956)]. A CFG is comprised of a set of
production rules. All the sentences that can be produced by the
repeated application of these rules are the formal language of that
grammar.

The grammar that defines hypotheses looks something like the
following1;

HYPOTHESIS -> if ACTION then ACTION

HYPOTHESIS -> ACTION if ACTION

ACTION -> VAR INTERACTOR VAR

ACTION -> VAR MODIFIER

ACTION -> MODIFIER VAR

ACTION -> ACTION and ACTION

VAR -> PROPERTY VAR

VAR -> bulbs

VAR -> voltage

VAR -> brightness

INTERACTOR -> is greater than

INTERACTOR -> is smaller than

INTERACTOR -> is equal to

MODIFIER -> increases

MODIFIER -> decreases

QUALIFIER -> series circuit

QUALIFIER -> parallel circuit

Each line is a production rule, the left-hand side of the rule can
be replaced by the right-hand side. Uppercase words refer to
further rules (they are non-terminal) and lowercase words refer
to tokens (they are terminal). A token can be anything, but in
our case, they are (sets of) words, e.g., “voltage” or “is greater
than.”

Consider the following hypothesis; “if the number of bulbs in a
series circuit increases, the brightness of the bulbs decreases.” If we
were to apply our grammar, we can decompose this hypothesis

1For the complete grammar, see https://github.com/Karel-Kroeze/adaptive-

hypothesis-grammars.

Frontiers in Education | www.frontiersin.org 3 January 2019 | Volume 3 | Article 116

https://github.com/Karel-Kroeze/adaptive-hypothesis-grammars
https://github.com/Karel-Kroeze/adaptive-hypothesis-grammars
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Kroeze et al. Automated Feedback on Hypotheses

FIGURE 1 | Screenshot of a typical inquiry learning space on the Go-Lab environment.

FIGURE 2 | Screenshot of the hypothesis scratchpad.

as per Figure 3. Although this decomposition provides the
structure of the hypothesis, it still does not contain the semantic
information necessary to evaluate the criteria.

If we add semantic information to each of the tokens, and
rules on how to unify this information to each of the production
rules, we can extract all relevant information from the hypothesis
(Knuth, 1968; Shieber, 2003). Figure 4 shows an example of the

final parse result2 which contains all the information needed to
evaluate the criteria discussed.

2The parser was created using the Nearley.js package (Hardmath123., 2017),

which implements the Earley context-free parsing algorithm (Earley, 1970). The

source code of the parser is available on GitHub; https://github.com/Karel-Kroeze/

adaptive-hypothesis-utils/.
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TABLE 1 | Scoring criteria.

Criterion Name Description Examples

1 Contains at least two

variables

The hypothesis should contain at least two

variables. Without two variables, the hypothesis can

at best be an observation, and is likely to be

nonsense.

“the current increases”

“the current increases and the brightness

increases”

2 Contains a modifier The hypothesis should contain at least one modifier

(e.g., “increases,” “floats,” but not “remains the

same”). Without a modifier, the hypothesis can at

best describe a static situation, and is likely to be

nonsense.

“the current remains the same”

“the current increases”

3 Is a syntactically correct

sentence

The hypothesis should be a correct sentence. Not

only is the hypothesis likely to be nonsense if it is not

a sentence, but moreover the automated system

can only parse syntactically correct sentences.

“the current increases decreases”

“the current increases”

4 Manipulates exactly one

independent variable

In order to test an effect of x on y, x should change,

and no other variable should change.

“if the current remains the same, the brightness

increases”

“if the number of bulbs increases and the current

increases, the brightness remains the same”

“if the number of bulbs increases, the brightness

decreases”

5 Qualifies the variables For some variables, it is their context that defines

them. e.g., for buoyancy, density is defined by mass

and volume, and in electrical circuits the type of

circuit is crucial.

“if the number of bulbs increases, the brightness

remains the same”

“if the mass of the object is larger than the

volume of the fluid, the object sinks”

“if the number of bulbs in a parallel circuit

increases, the brightness remains the same”

6 Specifies interactions

between variables

In some domains, it is the interaction between

variables that is important. In our dataset this refers

mainly to buoyancy, the relevant variable is the

density of an object, as related to the density of the

fluid.

“if the density of the object increases, the object

sinks”

“if the density of the object is larger than the

density of the fluid, the object sinks”

FIGURE 3 | Example of a hypothesis parse tree.

Feedback
The automated hypothesis scratchpad gives students the
opportunity to request feedback. Figure 5 shows an example of
the automated hypothesis scratchpad, with the feedback button
highlighted (the highlight is not part of the interface).

Table 2 gives an overview of the feedback used. The feedback
follows the guidelines set by Hattie and Timperley (2007) in that
it informs students of their progress, is specific about themistakes

made, and—where relevant—suggests modes of improvement.
The first three criteria from Table 2 are required conditions; if
a hypothesis does not have variables, a modifier or cannot be
parsed, the other criteria are not shown. Conversely, if these
criteria are met, feedback is presented only on the other relevant
criteria.

Feedback was presented to the student in textual form in
a pop-up window and was shown immediately after a student
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FIGURE 4 | Parse result with semantic information.

requested it by clicking the feedback button. Feedback was never
presented automatically. After receiving feedback, students could
revise their hypothesis, and ask for feedback again. No explicit
limits were placed on the amount of times students could ask for
feedback.

Measures
Three outcome measures are of interest; (1) do students use the
feedback tool, (2) does the parser correctly classify mistakes, and
(3) do students’ hypotheses improve after receiving feedback.

All student actions within a Go-Lab inquiry learning space are
logged to a database. Specifically, the history of all hypotheses
is tracked, including requests for feedback, and the feedback
received. Feedback counts can thus be readily determined from
the log files. A snapshot of a hypothesis is made whenever a
student asks for feedback, and of the final state of the hypothesis.
The collection of snapshots for a hypothesis creates a “story” for
that hypothesis, tracking it over time.

The validity of classifications made by the parser is evaluated
by calculating an inter-rater reliability between the results of the
parser and human coders. The human coders were instructed
to code as a teacher, ignoring small mistakes in spelling and
syntax if the intention of a hypothesis was clear. To train
the human coders, a sample of snapshots was coded, and any
disagreements were discussed. After reaching agreement, each
coder independently coded the remaining snapshots. Agreement
is calculated using Cohens’ κ , and interpreted using rules of
thumb Landis and Koch (1977) .

Each snapshot is given a score based on the number of criteria
passed, resulting in a score in a 0−k range, where k is the number
of criteria used (three in the first pilot, six in the second pilot and
final experiment). Improvement of hypotheses is evaluated by
comparing the score for a snapshot to the score for the previous
snapshot. The quality of a hypothesis is the quality of the final
snapshot of that hypothesis.

If feedback is effective, we expect to see that students who
have feedback available create higher quality hypotheses, and
that hypothesis quality increases after students ask for feedback:
each consecutive snapshot should have a higher quality than the
last.

During the study, it became apparent that the aggregate
score does not follow a parametric distribution, and therefore
could not be used as an outcome measure. The variables and
modifier criteria were satisfied by almost all students in our
samples. The syntax criterion was often indicative for success
on the manipulation, CVS and qualified criteria. Thus, even

though the variables, modifier and CVS criteria might be
important from a science education perspective, the syntactically
correct criterion was used as an indicator for hypothesis
quality.

Multilevel logistic models (i.e., generalized linear mixed
models) were used to account for the inherent group structure
in the data, controlling for student and class effects where
appropriate. The models used were comprised of two levels,
students and classes. All reported effects are on the student level.
To perform the models, we used R (R Core Team, 2018) and the
package “lme4” (Bates et al., 2015). The scripts used in analyses
are deposited along with the raw and generated datasets at DANS
(Kroeze, 2018).

FIELD STUDIES

Three field studies were conducted. An initial pilot study was
conducted with an early version of the hypothesis parser to
assess the feasibility of automated parsing of hypotheses using a
context-free grammar. Following that, a second pilot study was
conducted with the complete version of the parser to identify any
remaining issues with the parser and ILS before moving on to the
final experiment. The final experiment used a quasi-experimental
design to assess the benefit of the tool in improving students’
hypotheses. Each of these studies is described in more detail in
the following sections.

First Pilot Study
Participants

Four classes of 13- to 14-year-old secondary education students
(n = 99), spread over three HAVO classes (preparing for a
university of applied science, n = 76) and one VMBO class
(preparing for vocational education, n= 23) at a local high school
participated in the pilot. Students had already studied the subject
matter (supply and demand) as part of their regular curriculum
and had previously participated in studies using Go-Lab ILSs
and a version of the hypothesis scratchpad that did not provide
feedback.

Materials and Procedure

The pilot revolved around a short ILS set in the supply & demand
domain, where students were introduced to the interactions
between price, supply, and demand. The ILS was created in
collaboration with a participating economics teacher. Each class
performed the study in a single 50-min session. At the beginning
of a session, students were given an oral introduction detailing
how to use the environment and refreshing them on what
a hypothesis is. They were then asked to open the inquiry
learning space, where they were first presented with information
on the domain. They were then asked to create as many
hypotheses about this domain as possible in the automated
hypothesis scratchpad, and to use the feedback mechanism
when they were stuck or wanted to check their hypothesis.
An initial version of the parser was used that could detect the
first three criteria: it has two variables, it has a modifier, and
it is a syntactically correct sentence. Students were regularly
encouraged and reminded to create as many hypotheses as
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FIGURE 5 | Automated hypothesis scratchpad. The feedback button is highlighted.

TABLE 2 | Feedback for each criterion.

Criterion Feedback

Wrong Correct

Variables Not enough variables, A hypothesis should always have at

least two variables.

–

Modifier You can only test a hypothesis if something changes. Without

change, you cannot test the hypothesis.

–

Syntax It appears you’ve entered an incomplete hypothesis. I can

only give feedback on full hypothesesa.

–

I don’t understand your hypothesis. Are you sure this is a

correct hypothesis?; “[HYPOTHESIS]”b
–

CVS If you don’t change the value of [INDEPENDENT], you won’t

be able to test if this has an effect on [DEPENDENT]c.

You’re changing the value of [INDEPENDENT] to

see if that has an effect on [DEPENDENT]c.

You’re changing [INDEPENDENT] at the same time. You can’t

be sure which of these changes has an effect on

[DEPENDENT]d.

You’re changing only the value of [INDEPENDENT],

so you can be certain that any change in

[DEPENDENT] is caused by [INDEPENDENT]d.

Qualified You did not describe the conditions in which your hypothesis

applies.

You specified that your hypothesis only applies in a

[QUALIFIER].

[HYPOTHESIS], [INDEPENDENT], [DEPENDENT], and [VARIABLE] will be dynamically replaced with the actual hypothesis and variables used by the student and recognized by the

parser. The feedback has been translated from the Dutch original used in the experiments.
aUsed when a hypothesis starts valid but is incomplete (partial parse).
bUsed when a hypothesis cannot be parsed (nonsense, or syntax error).
cUsed when the independent variable is not manipulated.
dUsed when multiple independent variables are manipulated.

possible3, but no attempt was made to force the creation of
hypotheses or the use of the feedback tool. The session was
concluded with a small user satisfaction questionnaire. During
each session, the researcher and the classroom teacher monitored
the class, answering process-related questions, and eliciting
feedback if any out of the ordinary situations or interactions were
encountered.

3Unfortunately, during one of the HAVO sessions the teacher instructed students

to create ‘at least 4’ hypotheses, which was immediately interpreted as ‘create 4

hypotheses’.

Results

A total of 979 hypotheses were collected from 96 students. Most
students created three to five hypotheses and asked for feedback
multiple times over the course of the experiment. One student
asked for feedback 84 times and was removed as an outlier.

Inter-rater reliability between the parser and two human
experts was almost perfect on all three criteria (Cohen’s κ =

0.81 − 0.96), showing high parser accuracy. Hypotheses for
which students requested and received feedback at least once
were more likely to be correct on all criteria. This relation is
visible in Figure 6, and statistically significant using a multilevel
logistic model estimating the probability of a syntactically correct
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FIGURE 6 | Average performance on each criterion, by number of feedback requests.

hypothesis by the number of feedback requests, corrected for
student and class effects, gender, and age (βfeedbackCount =

1.00, SEβ = 0.17, CIOR = 1.93 − 3.83, p < 0.001), where
βfeedbackCount is the effect of each additional feedback request, and
CIOR the confidence interval of the Odds Ratio.

Discussion

The first pilot took place under test conditions; students were told
to create as many hypotheses as possible, and the learning space
was only there to provide a setting for hypotheses to be created.
Such conditions are different from usual educational practice.
Nevertheless, high parser accuracy and significantly increased
quality of hypotheses showed that a parser is feasible, and that
a hypothesis scratchpad enhanced with automated scoring and
feedback is promising.

Therefore, a second pilot study was conducted using an
expanded version of the context-free grammar that included all
criteria listed in Table 1. In addition, the automated scratchpad
was embedded in a full ILS, aligning much closer to how the tool
is likely to be used in practice.

Second Pilot Study
Participants

Participants came from one HAVO class of 13 to 14-year-old
secondary educations students (n = 27), at a local high school.
The students had recently been introduced to electrical circuits
as part of their regular curriculum but were familiar with neither
Go-Lab environments nor the hypothesis scratchpad prior to the
experiment.

Materials and Procedure

A short ILS in the electrical circuits domain that could be
completed in a single 50-min session was created in collaboration
with participating teachers. At the beginning of a session,

students were given an oral introduction detailing how to use the
tools in the ILS and refreshing them onwhat a hypothesis is. They
were then asked to open the ILS, where they were presented with
a short pre-test, followed by some information on the domain.
To guide students’ hypothesis construction, they were asked to
enter two predictions about the change in brightness of lightbulbs
in series and parallel circuits after adding another bulb. In the
next steps, students were asked to turn these predictions into
hypotheses in the automated hypothesis scratchpad, and design
an experiment in the Experiment Design app [see e.g., (van Riesen
et al., 2018)] to test their hypotheses. Finally, students were given
time to create an experimental setup in the Circuit Lab virtual
laboratory, test their hypotheses, and enter their conclusions.

All student actions took place in the ILS, which encompassed a
full inquiry cycle, from orientation to conclusion. This created an
environment more likely to occur in real educational settings. An
expanded version of the automated hypothesis scratchpad was
used, designed to be able to classify and give feedback to all the
relevant criteria.

During the session, the researcher and the classroom teacher
monitored the class, answering process-related questions and
eliciting feedback if any out of the ordinary situations or
interactions were encountered.

Results

Both the researcher and the classroom teacher noticed that
students had problems working with the ILS and staying on-task.
These problemswere process related (e.g., students got distracted,
skipped steps) and tool related (i.e., students did not know
how to work with the tool). Attempts to provide instructions
during the experiment were largely ineffective because students
were at different stages of the ILS (making group instructions
difficult), and there were too many students to provide individual
instructions.

Frontiers in Education | www.frontiersin.org 8 January 2019 | Volume 3 | Article 116

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Kroeze et al. Automated Feedback on Hypotheses

FIGURE 7 | Average performance on each criterion, by number of feedback requests. Note that the poor performance is at least partially due to low parser accuracy,

and that the scores for the Syntax, manipulation, and qualified criteria overlap.

In addition, some of the written instructions were too
long. For example, upon seeing the instructions, one student
immediately uttered: “too long, won’t read.” It seems likely that
his sentiments were shared by other students, highlighting the
need for verbal (or at least more interactive) instructions.

A total of 50 hypotheses were collected from 27 students.
The plurality (13) of students created two hypotheses each, 7
students did not create any hypotheses. Most (16) students asked
for feedback at least once, 11 students did not ask for feedback.
One student asked for feedback 23 times and was removed as an
outlier.

Parser accuracy was below expectations, achieving a Cohens’
κ of 0.91, 0.90, and 0.40 on the contains at least two variables,
contains a modifier, and is a syntactically correct sentence
criterion, respectively. Accuracy for the manipulates exactly one
variable and is qualified criteria is not reported, as the parser
failed to recognize 30 out of 46 syntactically correct snapshots,
leaving only 16 parsed snapshots.

Although there does appear to be a positive effect of
feedback on hypothesis quality (see Figure 7), this effect was not
statistically significant, as shown by a multilevel logistic model
estimating the probability of a syntactically correct hypothesis by
the number of feedback requests, correcting for student effects,
gender and age (βfeedbackCount = 0.46, SEβ = 0.24, CIOR =

0.98− 2.57, p = .058).

Discussion

The number of collected hypotheses per student was lower than
in the first pilot. In part, that was by design: the first pilot
was specifically set up to encourage students to create as many
hypotheses as possible, whereas, in this pilot students were guided
to create two hypotheses. The participants in this pilot also had

less experience working in an ILS, which caused several process-
related issues during the session that likely influenced the number
of hypotheses created. A more structured lesson plan where
students start and end each step in the inquiry cycle at the same
time will allow for verbal instructions to be given before starting
each section.

Many students failed to distinguish between series and parallel
circuits in their hypotheses, even when their predictions did show
they understood the differences between the types of circuits.
This does seem to indicate the need for supporting the creation of
hypotheses while at the same time highlighting that the currently
implemented support is insufficient.

Poor parser accuracy can be attributed to students’ difficulties
in working with the ILS, additional criteria introducing more
complexity to the grammar, and a lack of training data for
the Electrical Circuits domain in the target language (Dutch)
to calibrate the parser. Using the data gathered in the pilot,
we were able to make improvements to the grammar used by
the parser. When applying this new grammar to the gathered
hypotheses, inter-rater agreement on the syntax criterion was
raised to moderate (Cohens’ κ = 0.53).

Main Study
Participants

Six classes of 13- to 15-year-old secondary education students
(n = 132), from two local high schools participated in the study.
Six students used incorrect login credentials and were left out
of the analyses. The remaining participants came from 4 HAVO
classes (n = 78), and 2 VWO classes (n = 48). Students
were randomly assigned to one of two conditions. Students
in the experimental condition (n = 68) used the automated
hypothesis scratchpad, while those in the control condition (n =

58) used a version of the hypothesis scratchpad that did not
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provide feedback. No significant differences were present in the
distribution of age, gender, and current physics grade across
conditions (Table 3).

Materials and procedure

A single 50-min session was used, covering the same material as
that of the second pilot study. The ILS used in the second pilot
study was used again, with some minor changes to ameliorate
some of the process-related issues students encountered. In
particular, written descriptions and instructions were shortened.
Instead, at the outset of the session and each phase, students were
given a short oral introduction.

Students received a link to a randomizer4 that assigned each
student to one of two conditions and redirected them to the
corresponding ILS. Students were instructed not to move to the
next phase until told to do so.

At pre-set intervals during the sessions, the researcher gave an
oral introduction to the next phase of the inquiry cycle, and the
corresponding tools in the ILS. Students where then encouraged
to start with that phase. In each session, the researcher and the
class teacher monitored the students, answering process-related
questions, and eliciting feedback if any extra-ordinary situations
or interactions were encountered.

Results

Most students were already familiar with the GoLab environment
and its tools and encountered no significant difficulties. Based on
observations during the sessions, oral introductions prior to each
phase of the ILS appeared to keep most students on task, most of
the time.

Students in the experimental condition created 201
hypotheses, for 56 of which feedback was requested. Of the
68 students in the experimental condition, exactly half never
asked for feedback.

Parser accuracy was moderate to almost perfect, achieving
a Cohens’ κ of 0.84, 0.70, and 0.59 on the contains at least
two variables, contains a modifier, and is a syntactically correct
sentence criterion, respectively, and > 0.80 for the manipulates
exactly one variable and is qualified criteria.

Figure 8 appears to show that on average the hypotheses
generated in the experimental condition scored higher on all
criteria. In addition, Figure 9 suggests a positive relation between
the number of feedback requests and the quality of hypotheses. In
particular, hypotheses for which feedback was requested at least
once appear to be of higher quality.

To test the effect of our tool on hypothesis quality, we fitted
a multilevel logistic model, controlling for student and class
effects, as well as gender, age, physics grade, and academic
level. We found no significant effect from being assigned to the
experimental condition (βcondition = 0.25, SEβ = 0.34, CIOR =

0.66 − 2.50, p = 0.472). Given that half of all participants in the
experimental group never requested feedback, this outcome was
not unexpected.

4A separate ILS was created for each condition. The randomizer forwarded the

students browser to one of these conditions. Randomization was weighted to

ensure a roughly equal distribution across conditions in each session.

However, when we split the experimental group in two, based
on whether students requested feedback or not (n = 34 in both
groups, Figure 10), and contrast those who requested feedback
against those who did not or could not, controlling for student
and class effects, as well as gender, age, physics grade and
academic level, the effect of requesting feedback is significant
(βfeedbackCount = 1.47, SEβ = 0.42,CIOR = 1.92 − 9.89, p <

0.001).
It could be argued that students who did not request feedback

when it was made available to them are less proficient students.
However, a contrast analysis comparing students in the control
condition (who could not ask for feedback) and those in the
experimental condition who did not request feedback found no
significant difference between the two groups on the syntactically
correct criterion (βcondition = −0.30, SE = 0.39, CIOR = 0.34 −
1.60, p = 0.445). We thus found no evidence to suggest that
there was a difference between students who could have asked
for feedback but did not do so, and students who did not have the
option to ask for feedback.

GENERAL DISCUSSION

The creation of hypotheses is a critical step in the inquiry
cycle (Zimmerman, 2007), yet students of all ages experience
difficulties creating informative hypotheses (Mulder et al.,
2010). Automated scaffolds can help students create informative
hypotheses, but their implementation in the regular curriculum
is often cost-prohibitive, especially since they can typically only
be used in one specific domain and language. This study set out
to create a hypothesis scratchpad that can automatically evaluate
and score hypotheses and provide students with immediate
feedback.We use a flexible Context-Free Grammar approach that
can relatively easily be adapted and extended for other languages
and domains. We described the development process of this tool
over two pilot studies and evaluated its instructional effectiveness
in a controlled experiment.

Across three studies, we showed that a hypothesis parser
based on a context-free-grammar is feasible, attaining moderate
to almost perfect levels of agreement with human coders. The
required complexity of the parser is directly linked to the
syntactical complexity of the domain. For example, the electrical
circuits domain requires a more complex parser than the supply
and demand domain. Further development of the context-free-
grammar used in the parser will contribute to higher reliability
and may extend it to other languages and domains.

The second pilot study illustrated that a lack of familiarity
of students with the online environment and the tools used
can have a negative effect on their performance. Students were
distracted by technical and process related issues, and had
difficulty remaining on-task. In the final experiment, we used a
largely identical learning environment, but students were verbally
introduced to each phase. These introductions allowed students
to focus on the content of the learning environment, rather than
on how to use the learning environment itself.

Nevertheless, when using the automated hypothesis
scratchpad in a “typical” ILS, students often did not request
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TABLE 3 | Participant characteristics, by condition.

Overall Control Experimental Test statistic (df) P-value

126 58 68

Gender

(%)

Female 57 (45.2) 27 (46.6) 30 (44.1) χ2(1) = 0.01 0.925

Male 69 (54.8) 31 (53.4) 38 (55.9)

Level (%) HAVO 78 (61.9) 35 (60.3) 43 (63.2) χ2(1) = 0.02 0.882

VWO 48 (38.1) 23 (39.7) 25 (36.8)

Mean age (SD) 13.96 (0.64) 13.98 (0.66) 13.95 (0.63) t(119.09) = 0.34 0.736

Mean grade (SD) 6.50 (0.86) 6.52 (0.86) 6.49 (0.86) t(120.51) = 0.21 0.836

FIGURE 8 | Average performance by criterion, by condition.

feedback. Timmers et al. (2015) found a relation between gender
and the willingness to ask for feedback, but such a relation was
not present in our sample. In fact, none of the background
variables collected (age, gender, physics grade and educational
level) were significantly related to feedback requests or the
quality of hypotheses.

If the goal was to obtain as many hypotheses as possible
and assess the performance of the parser alone, we would
have been better off following the approach taken in the first
pilot. However, we deliberately chose to embed the automated
hypothesis scratchpad in a typical ILS in the second pilot and
main study, with the aim of replicating “real-world” conditions.
In doing so, we can draw conclusions that are likely to be
applicable to educational practice, rather than in laboratory
conditions alone.

In the first pilot, the number of feedback requests was
significantly related to the quality of hypotheses. This result
was confirmed in a controlled experiment, where students
who requested feedback were significantly more likely to
create syntactically valid hypotheses than those who did
not. The effects of feedback were immediate; hypotheses for

which feedback was requested once where more likely to be
correct.

To the best of our knowledge, no other tool exists that can
reliably score hypotheses, can easily be adapted to different
domains, and that allows students to create free-text hypotheses.
The automated hypothesis scratchpad we present here can
provide a clear and immediate benefit in science learning,
provided students request feedback. By increasing the quality
of students’ hypotheses, we may assume that students are able
to engage in more targeted inquiries, positively impacting their
learning outcomes. How students can best be encouraged to
request (and use) feedback is an open problem, and out of scope
for this project. The automated hypothesis scratchpad could also
be adapted to be a monitoring tool, highlighting students that
may have difficulties creating hypotheses, allowing teachers to
intervene directly.

The ability to reliably score hypotheses presents possibilities
besides giving feedback. For example, hypothesis scores could
serve as an indicator of inquiry skill. As such, they can be part
of student models in adaptive inquiry learning environments.
Crucially, obtaining an estimate from students’ inquiry products
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FIGURE 9 | Average performance by criterion for the experimental group, by number of feedback requests.

FIGURE 10 | Average performance on each criterion, by condition and feedback use.

is less obtrusive than doing so with a pre-test, and likely to
be more reliable than estimates obtained from students’ inquiry
processes.

The aggregate hypothesis score computed for students did
not have a known parametric distribution. This represents a
serious limitation, as the score could not be used in statistical
analyses. As a result, we chose to only test statistical significance
based on the syntax criterion. Investigating alternative modeling
techniques to arrive at a statistically valid conclusion based
on multiple interdependent criteria will be part of our future
work.

An automated hypothesis scratchpad providing
students with immediate feedback on the quality of
their hypotheses was implemented using context-free
grammars. The automated scratchpad was shown to be
effective; students who used its feedback function created
better hypotheses than those who did not. The use of
context-free grammars makes it relatively straightforward
to separate the basic syntax of hypotheses, language
specific constructs, and domain specific implementations.
This separation allows for the quick adaptation of
the tool to new languages and domains, allowing
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configuration by teachers, and inclusion in a broad range
of inquiry environments.
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